Fantasia

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1654    Accepted Submission(s): 429

Problem Description
Professor Zhang has an undirected graph G with n vertices and m edges. Each vertex is attached with a weight wi. Let Gi be the graph after deleting the i-th vertex from graph G. Professor Zhang wants to find the weight of G1,G2,...,Gn.

The weight of a graph G is defined as follows:

1. If G is connected, then the weight of G is the product of the weight of each vertex in G.
2. Otherwise, the weight of G is the sum of the weight of all the connected components of G.

A connected component of an undirected graph G is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in G.

 
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains two integers n and m (2≤n≤105,1≤m≤2×105) -- the number of vertices and the number of edges.

The second line contains n integers w1,w2,...,wn (1≤wi≤109), denoting the weight of each vertex.

In the next m lines, each contains two integers xi and yi (1≤xi,yi≤n,xi≠yi), denoting an undirected edge.

There are at most 1000 test cases and ∑n,∑m≤1.5×106.

 
Output
For each test case, output an integer S=(∑i=1ni⋅zi) mod (109+7), where zi is the weight of Gi.
 
Sample Input
1
3 2
1 2 3
1 2
2 3
 
Sample Output
20
 
/*
hdu 5739 割点 problem:
给你一个无向图,G[i]为删除i点时,无向图的价值. 求 sum(i*G[i])%mod
如果当前是连通的,那么连通分量的价值为所有点权值的积(任意两个节点连通)
否则为拆分后的各个连通分量的价值的和 solve:
所以需要判断当前点是否是割点.
如果不是割点,只需要减去这个点的权值即可. 如果是割点,要减去这个连通分量的价值再加上拆散后的各个连通分量的值 最开始题意理解错了- -,而且模板有点问题,一直wa. hhh-2016-08-27 19:47:17
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <math.h>
#include <queue>
#include <map>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define scanfi(a) scanf("%d",&a)
#define scanfl(a) scanf("%I64d",&a)
#define key_val ch[ch[root][1]][0]
#define inf 1e9
using namespace std;
const ll mod = 1e9+7;
const int maxn = 100005; struct Edge
{
bool cut ;
int v,next,w;
} edge[maxn*5]; int head[maxn],tot;
int low[maxn],dfn[maxn],Stack[maxn],index,top;
bool Instack[maxn],cut[maxn];
int bridge;
ll val[maxn],mul[maxn],ans[maxn],fans[maxn],tval[maxn];
void add_edge(int u,int v)
{
edge[tot].v = v,edge[tot].next = head[u],head[u] = tot++;
} ll tans =1 ; ll pow_mod(ll a,ll n)
{
ll cnt =1 ;
while(n)
{
if(n & 1) cnt = cnt*a%mod;
a = a*a%mod;
n >>= 1;
}
return cnt ;
}
int now;
vector<int> vec[maxn];
int from[maxn];
void Tarjan(int u,int ance,int pre)
{
int v;
vec[now].push_back(u);
from[u] = now;
low[u] = dfn[u] = ++index;
Stack[top++] = u;
Instack[u] = true;
tans = tans*val[u] % mod;
int son = 0;
for(int i= head[u]; i!= -1; i = edge[i].next)
{
v = edge[i].v;
if(v == pre){
continue;
}
if(!dfn[v])
{
son ++ ;
ll tp = tans;
Tarjan(v,ance,u);
low[u] = min(low[u],low[v]); if(u != pre && low[v] >= dfn[u])
{
cut[u] = true;
ll ta = tans * pow_mod(tp,mod-2)%mod;
// cout <<"node:" << u <<" ta:" <<ta <<endl;
ans[u] = (ans[u] + ta)%mod;
fans[u] = (fans[u] * ta) % mod;
}
}
else if(low[u] > dfn[v])
low[u] = dfn[v];
}
if(u == ance && son > 1)
cut[u] = true;
Instack[u] = false;
top --;
} void init(int n)
{
for(int i = 0; i <= n+1; i++)
{
head[i] = -1;
ans[i] = 0;
fans[i] = 1;
Instack[i]=cut[i]= 0;
dfn[i] = 0;
vec[i].clear();
}
tot=top=index=0;
} int main()
{
// freopen("in.txt","r",stdin);
int T,n,m,u,v; scanfi(T);
while(T--)
{ scanfi(n),scanfi(m);
init(n);
for(int i =1; i <= n; i++)
{
scanfl(val[i]);
fans[i] = 1;
}
for(int i = 0; i < m; i++)
{
scanfi(u),scanfi(v);
add_edge(u,v);
add_edge(v,u);
}
now = 1;
ll ob = 0;
for(int i = 1; i <= n; i++)
{
if(!dfn[i])
{
tans= 1;
Tarjan(i,i,-1);
tval[now] = tans;
ll amul = tans;
ob = (ob+tans) %mod;
// cout << "all:" <<tans<<endl;
for(int j = 0 ; j < vec[now].size(); j ++)
{
int to = vec[now][j]; // cout << to <<" " << fans[to] << endl;
if(to == i) continue;
ans[to] = (ans[to] + amul*pow_mod(fans[to]*val[to]%mod,mod-2)%mod);
if(ans[to] > mod) ans[to] -= mod;
}
now ++;
}
}
ll out = 0;
ll tm;
for(int i = 1; i <= n; i++)
{
// cout << fans[i] <<" " << ans[i] <<" " <<cut[i] << endl;
int tf = from[i];
if(cut[i])
{
tm = (ob - tval[tf] + ans[i] + mod)%mod;
}
else
{
if(vec[from[i]].size() > 1)
tm = (ob - tval[tf] + tval[tf]*pow_mod(val[i],mod-2)%mod + mod) % mod;
else
tm = (ob - tval[tf] + mod) % mod;
}
out = (out + i * tm % mod) % mod;
}
printf("%I64d\n",out);
}
return 0;
} /*
3
4 3
1 2 3 4
1 2
2 3
1 3 4 2
100000000 131231232 312354435 432134234
1 2
3 4 66
315142079 */

  

hdu 5739 割点的更多相关文章

  1. hdu 4587(割点的应用)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4587 思路:题目的意思很简单,就是删除任意2个节点以及关联的边,求图的最大连通分量数.我们知道删除割点 ...

  2. HDU 5739 Fantasia 双连通分量 树形DP

    题意: 给出一个无向图,每个顶点有一个权值\(w\),一个连通分量的权值为各个顶点的权值的乘积,一个图的权值为所有连通分量权值之和. 设删除顶点\(i\)后的图\(G_i\)的权值为\(z_i\),求 ...

  3. HDU 5739 Fantasia

    可以将这个图转换成森林来进行树形dp求解.看了这篇具体教学才会的:http://www.cnblogs.com/WABoss/p/5696926.html 大致思路:求解一下点双连通分量(Tarjan ...

  4. HDU 4587 TWO NODES 割点

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4587 题意: 删除两个点,使连通块的数目最大化 题解: 枚举删除第一个点,然后对删除了第一个点的图跑 ...

  5. HDU 4587 TWO NODES 枚举+割点

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4587 TWO NODES Time Limit: 24000/12000 MS (Java/Other ...

  6. hdu 4587 推断孤立点+割点+ 删除点之后,剩下多少连通分量

    做了非常久...... 题目链接:  http://acm.hdu.edu.cn/showproblem.php?pid=4587 先枚举删除的第一个点,第二个点就是找割点.没有割点当然也有答案 学到 ...

  7. HDU 3844 Mining Your Own Business(割点,经典)

    题意: 给出一个连通图,要求将某些点涂黑,使得无论哪个点(包括相关的边)撤掉后能够成功使得剩下的所有点能够到达任意一个涂黑的点,颜料不多,涂黑的点越少越好,并输出要涂几个点和有多少种涂法. 思路: 要 ...

  8. Destroying the bus stations HDU - 2485(最小割点)

    题意: 就是求最小割点 解析: 正向一遍spfa 反向一遍spfa  然后遍历每一条边,对于当前边 如果dis1[u] + dis2[v] + 1 <= k 那么就把这条边加入到网络流图中, 每 ...

  9. Key Vertex (hdu 3313 SPFA+DFS 求起点到终点路径上的割点)

    Key Vertex Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Tota ...

随机推荐

  1. Django 基本设置

    建立django目录,为了独立区分app和主站的关系,需要把app完全和主站分离 app/views.py from django.shortcuts import render from djang ...

  2. WingIDE5.*注册破解方法

    WingIDE是Python程序语言设计的集成开发环境,具有语法标签高亮显示,命令自动完成和函数跳转列表等非常强大的功能.本文主要介绍WingIDE 5安装及注册破解方法. 1. WingIDE 5下 ...

  3. 直方图均衡化及matlab实现

    在处理图像时,偶尔会碰到图像的灰度级别集中在某个小范围内的问题,这时候图像很难看清楚.比如下图: 它的灰度级别,我们利用一个直方图可以看出来(横坐标从0到255,表示灰度级别,纵坐标表示每个灰度级别的 ...

  4. 记一次向maven中央仓库提交依赖包

    Maven是Java中最常用的依赖管理工具,Maven的中央仓库保罗万象,涵盖了各个领域的框架.工具和文档,也是Java生态强大生命力的体现.我们自己开发的一些有用有趣的代码也可以通过打包上传到mav ...

  5. Python内置函数(20)——hex

    英文文档: hex(x) Convert an integer number to a lowercase hexadecimal string prefixed with "0x" ...

  6. python入门:python包管理工具pip的安装

    pip 是一个安装和管理 Python 包的工具 , 是 easy_install 的一个替换品. distribute是setuptools的取代(Setuptools包后期不再维护了),pip是e ...

  7. Docker加速器(阿里云)

    1. 登录阿里开发者平台: https://dev.aliyun.com/search.html,https://cr.console.aliyun.com/#/accelerator,生成专属链接 ...

  8. React-redux使用中有关Provider问题

    先上错误: Warning: Failed prop type: Invalid prop `children` of type `array` supplied to `Provider`, exp ...

  9. 关于vertical-align和line-height的真知灼见

    本文的重点是了解vertical-align和line-height的使用 涉及到的名词:基线,底端,行内框,行框,行间距,替换元素及非替换元素,对齐.只有充分理解这些概念才会灵活运用这两个属性. 什 ...

  10. [翻译] Tensorflow中name scope和variable scope的区别是什么

    翻译自:https://stackoverflow.com/questions/35919020/whats-the-difference-of-name-scope-and-a-variable-s ...