题意:\((0,0)\)到\((x,y),\ x \le n, y \le m\)连线上的整点数\(*2-1\)的和


\((0,0)\)到\((a,b)\)的整点数就是\(gcd(a,b)\)

因为...直线上的整点...扩展欧几里得...每\(\frac{a}{d}\)有一个解,到\(a\)你说有几个解...




套路推♂倒见学习笔记

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=1e5+5;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1; c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0'; c=getchar();}
return x*f;
} int n, m, k;
int notp[N], p[N];ll phi[N];
void sieve(int n) {
phi[1] = 1;
for(int i=2; i<=n; i++) {
if(!notp[i]) p[++p[0]] = i, phi[i] = i-1;
for(int j=1; j<=p[0] && i*p[j]<=n; j++) {
notp[i*p[j]] = 1;
if(i%p[j] == 0) {phi[i*p[j]] = phi[i]*p[j]; break;}
phi[i*p[j]] = phi[i]*(p[j]-1);
}
}
for(int i=1; i<=n; i++) phi[i] += phi[i-1];
}
ll cal(int n, int m) {
ll ans=0; int r;
for(int i=1; i<=n; i=r+1) {
r = min(n/(n/i), m/(m/i));
ans += (phi[r] - phi[i-1]) * (n/i) * (m/i);
}
return ans;
}
int main() {
//freopen("in","r",stdin);
n=read(); m=read();
if(n>m) swap(n, m);
sieve(n);
printf("%lld", 2*cal(n, m) - (ll)n*m);
}

BZOJ 2005: [Noi2010]能量采集 [莫比乌斯反演]的更多相关文章

  1. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  2. bzoj 2005: [Noi2010]能量采集 筛法||欧拉||莫比乌斯

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB[Submit][Status][Discuss] Description 栋栋 ...

  3. BZOJ 2005: [Noi2010]能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 3312  Solved: 1971[Submit][Statu ...

  4. BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )

    一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...

  5. luogu1447 [NOI2010]能量采集 莫比乌斯反演

    link 冬令营考炸了,我这个菜鸡只好颓废数学题了 NOI2010能量采集 由题意可以写出式子: \(\sum_{i=1}^n\sum_{j=1}^m(2\gcd(i,j)-1)\) \(=2\sum ...

  6. bzoj 2005: [Noi2010]能量采集【莫比乌斯反演】

    注意到k=gcd(x,y)-1,所以答案是 \[ 2*(\sum_{i=1}^{n}\sum_{i=1}^{m}gcd(i,j))-n*m \] 去掉前面的乘和后面的减,用莫比乌斯反演来推,设n< ...

  7. BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛

    分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...

  8. 【刷题】BZOJ 2005 [Noi2010]能量采集

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  9. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

随机推荐

  1. list容器的C++代码实现

    #include <iostream> using namespace std; template  <class T> class mylist;//前置声明 templat ...

  2. javascript数据类型之Array类型

    Array类型 除了Object之外,Array类型恐怕是ECMAScript中最常用的类型了.而且,ECMAScript中的数组与其他多数语言中的数组有着相当大的区别.虽然ECMAScript数组与 ...

  3. Spark算子--leftOuterJoin和rightOuterJoin

    转载请标明出处http://www.cnblogs.com/haozhengfei/p/cb71cd3ac5d7965a2c61891659264d54.html leftOuterJoin和righ ...

  4. JavaScript之事件委托(附原生js和jQuery代码)

    事件委托的原理依赖于事件冒泡,可以通过给父元素的事件委托来确定是哪个子元素触发了事件从而做一系列操作. 使用事件委托的优点 1.操作子元素时不用一一遍历,可以根据事件触发的对象而进行相应操作 dom结 ...

  5. asp.net -mvc框架复习(11)-基于三层架构与MVC实现完整的用户登录

    一.先从M部分写起(Modles\DAL\BLL) 1.Modles 实体类:上次实体类已经搞定. 2.DAL 数据访问类类 (1)通用数据数据访问类: A:  先编写数据连接字符串,写到网站根目录W ...

  6. 【编程技巧】Ext.QuickTips.init();

    启动悬浮提示(在你验证非法时.和现实提示语句等) 默认情况下悬浮提示没有启动:所以必须加上这句代码

  7. Python中执行系统命令常见的几种方法

    (1) os.system 这个方法是直接调用标准C的system() 函数,仅仅在一个子终端运行系统命令,而不能获取命令执行后的返回信息. import os os.system('cat /pro ...

  8. 通过EXPLAIN分析低效SQL的执行计划

    explain select * from film where rating>9\G; select_type 表示select的类型 SIMPLE 代表简单表,不用表连接或子查询 PRIMR ...

  9. keytool 错误:java.to.FileNotFoundException:

    老是报如题的错误: 后来才知道是因为当前的目录下没有写的权限,所以需要指定一个路径来存放android.key: keytool -genkey -alias android.key -keyalg ...

  10. text和submit框的border问题

    A1:在input框中,为type为text的输入框增加边框,它会在内容区域外额外增添,但是在submit框中,它会占用内容区块的一部分作为边框 <style type="text/c ...