题意:

交换序列中两个元素,求逆序对


做分块做到这道题...一看不是三维偏序嘛....

作为不会树套树的蒟蒻就写CDQ分治吧....

对时间分治...x排序...y树状数组...

交换拆成两个插入两个删除,保存一下类型就行了

才发现逆序对问题的删除操作不用时间倒流也可以,直接减去它形成的逆序对数并且在树状数组中删除就可以了

然后愚蠢的我竟然把操作的时间弄成相同的调了一会才觉得不对....

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
const int N=1e5+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} int n,Q,a[N],mp[N];
int m,tim;
struct meow{
int t,x,y,type,qid;
meow(){}
meow(int a,int b,int c,int d,int e=):t(a),x(b),y(c),type(d),qid(e){}
bool operator <(const meow &r) const{
return x==r.x ? y<r.y : x<r.x;
}
}q[N],t[N];
int ans[N]; int c[N];
inline void add(int p,int v){for(;p<=n;p+=(p&-p)) c[p]+=v;}
inline int sum(int p){int re=; for(;p;p-=(p&-p)) re+=c[p]; return re;} void CDQ(int l,int r){
if(l==r) return;
int mid=(l+r)>>;
for(int i=l;i<=r;i++){
if(q[i].t<=mid) add(q[i].y,q[i].type);
else ans[q[i].qid]+= q[i].type*( sum(n)-sum(q[i].y) );
}
for(int i=l;i<=r;i++) if(q[i].t<=mid) add(q[i].y,-q[i].type); for(int i=r;i>=l;i--){
if(q[i].t<=mid) add(q[i].y,q[i].type);
else ans[q[i].qid]+= q[i].type*sum(q[i].y-);
}
for(int i=l;i<=r;i++) if(q[i].t<=mid) add(q[i].y,-q[i].type); int p1=l,p2=mid+;
for(int i=l;i<=r;i++){
if(q[i].t<=mid) t[p1++]=q[i];
else t[p2++]=q[i];
}
for(int i=l;i<=r;i++) q[i]=t[i];
CDQ(l,mid); CDQ(mid+,r);
} int main(){
freopen("in","r",stdin);
n=read();
for(int i=;i<=n;i++) a[i]=mp[i]=read();
sort(mp+,mp++n); mp[]=unique(mp+,mp++n)-mp-;
for(int i=;i<=n;i++)
a[i]=lower_bound(mp+,mp++mp[],a[i])-mp, q[++m]=meow(++tim,i,a[i],, );
n=mp[];//Look,here I changed the n. Q=read();
for(int i=;i<=Q;i++){
int p1=read(),p2=read();
q[++m]=meow(++tim,p1,a[p2], , i); q[++m]=meow(++tim,p2,a[p1], , i);
q[++m]=meow(++tim,p1,a[p1],-, i); q[++m]=meow(++tim,p2,a[p2],-, i);
swap(a[p1],a[p2]);
}
sort(q+,q++m);
CDQ(,m);
printf("%d\n",ans[]);
for(int i=;i<=Q;i++) ans[i]+=ans[i-],printf("%d\n",ans[i]);
}

BZOJ 2141: 排队 [CDQ分治]的更多相关文章

  1. bzoj 2141 : 排队 (cdq分治+bit)

    链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2141 思路: 其实就是求动态逆序对...cdq降维,用树状数组前后求两遍逆序对就好了 切水 ...

  2. [BZOJ 3456]城市规划(cdq分治+FFT)

    [BZOJ 3456]城市规划(cdq分治+FFT) 题面 求有标号n个点无向连通图数目. 分析 设\(f(i)\)表示\(i\)个点组成的无向连通图数量,\(g(i)\)表示\(i\)个点的图的数量 ...

  3. [BZOJ 2989]数列(CDQ 分治+曼哈顿距离与切比雪夫距离的转化)

    [BZOJ 2989]数列(CDQ 分治) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[y]| ...

  4. BZOJ 2141 排队 (CDQ分治)

    [BZOJ2141]排队 这道题和动态逆序对比较像(BZOJ-3295 没做过的同学建议先做这题),只是删除操作变成了交换.解法:交换操作可以变成删除加插入操作,那么这题就变成了 (时间,位置,值)的 ...

  5. bzoj 4237 稻草人 - CDQ分治 - 单调栈

    题目传送门 传送点I 传送点II 题目大意 平面上有$n$个点.问存在多少个矩形使得只有左下角和右上角有点. 考虑枚举左下角这个点.然后看一下是个什么情况: 嗯对,是个单调栈.但不可能暴力去求每个点右 ...

  6. bzoj 3262 陌上花开 - CDQ分治 - 树状数组

    Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当 ...

  7. bzoj 2141: 排队

    2141: 排队 Time Limit: 4 Sec Memory Limit: 259 MB Description 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我, ...

  8. Bzoj 2141: 排队 分块,逆序对,树状数组

    2141: 排队 Time Limit: 4 Sec  Memory Limit: 259 MBSubmit: 1310  Solved: 517[Submit][Status][Discuss] D ...

  9. bzoj 2141 : 排队 分块

    题目链接 2141: 排队 Time Limit: 4 Sec  Memory Limit: 259 MBSubmit: 1169  Solved: 465[Submit][Status][Discu ...

随机推荐

  1. Springboot-shiro-redis实现登录认证和权限管理

    Springboot-shiro-redis实现登录认证和权限管理 在学习之前: 首先进行一下Apache Shiro和Shiro比较: Apache Shiro是一个功能强大.灵活的,开源的安全框架 ...

  2. 解决指向iframe的target失效

    今天遇到一个bug. 主页面中点击左侧导航栏[某]项后,右侧的iframe页面加载到了新窗口.之后,所有选项的iframe加载都异常. 检查<a>标签target="main&q ...

  3. 01-01_环境准备_pyenv

    本文重点: 了解pyenv pyenv下载及安装 pyenv 使用 安装ipython 一.了解pyenv 经常遇到这样的情况: 系统自带的 Python 是 2.6,自己需要 Python 2.7 ...

  4. 改进ban冒泡排序

    设置一标志性变量pos,用于记录每趟排序中最后一次进行交换的位置.由于pos位置之后的记录均已交换到位,故在进行下一趟排序时只要扫描到pos位置即可. //改进后算法如下: function bubb ...

  5. Java Web学习路线图

    三张Java Web完整学习路线图,阶段一和JavaSE部分可不学

  6. windows下pip安装python模块时报错

    windows下pip安装python模块时报错总结  装载于:https://www.cnblogs.com/maxaimee/p/6515165.html 前言: 这几天把python版本升级后, ...

  7. 从零开始学习前端JAVASCRIPT — 5、JavaScript基础BOM

    1:BOM(Browser  Object  Model)概念 window对象是BOM中所有对象的核心. 2:window属性(较少用) self:self代表自己,相当于window. windo ...

  8. vi命令加行号查找替换等命令

    一.加行号           : set nu二.vi查找:    当你用vi打开一个文件后,因为文件太长,如何才能找到你所要查找的关键字呢?在vi里可没有菜单-〉查找,              ...

  9. HEXO+Github,搭建属于自己的博客

    摘录自:http://www.jianshu.com/p/465830080ea9 1. github的准备 账号 密码 建立Repository建立与你用户名对应的仓库,仓库名必须为[your_us ...

  10. MYSQL GROUP BY Optimization

    GROUP BY Optimization 常规的匹配group by(分组)操作子句是扫整表并且创建包含连续的分组行的临时表, 利用临时表得到group数据,运用appregate function ...