3597: [Scoi2014]方伯伯运椰子

题意:

from mhy12345

给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi,

当前容量上限ci,每单位通过该边花费di,限制网络流量不能改变。调整后必须满

流,设调整了K 次,使得费用减少量为D,最大化D/K


就是给你一个费用流,但不是最小,增广的费用为b+d,退流的费用为a-d

就是正反向增广路

根据消圈定理流f为mcmf当且仅当无负费用增广圈

01分数规划+spfa求负环即可

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
#define fir first
#define sec second
const int N = 505, M = 1e4+5, mo = 1e9+7;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
return x*f;
} int n, m;
double l, r; struct edge {int v, ne; double w;} e[M];
int cnt, h[N];
inline void ins(int u, int v, double w) {
e[++cnt] = (edge) {v, h[u], w}; h[u] = cnt;
}
namespace nc {
int vis[N], T; double d[N];
bool dfs(int u, double mid) {
vis[u] = T;
for(int i=h[u]; i; i=e[i].ne) {
int v = e[i].v; double w = e[i].w + mid;
if(d[v] > d[u] + w) {
d[v] = d[u] + w;
if(vis[v] == T || dfs(v, mid)) return true;
}
}
vis[u] = 0;
return false;
}
bool neg_circle(double mid) {
memset(vis, 0, sizeof(vis));
memset(d, 0, sizeof(d));
for(T=1; T<=n+2; T++) if(dfs(T, mid)) return true;
return false;
}
}
bool check(double mid) {
return nc::neg_circle(mid);
}
int main() {
freopen("in", "r", stdin);
n = read(); m = read();
for(int i=1; i<=m; i++) {
int u = read(), v = read(), a = read(), b = read(), c = read(), d = read();
ins(u, v, b+d); if(c) ins(v, u, a-d);
r += c * d;
}
while(r - l > 1e-3) {
double mid = (l+r)/2.0;
if(check(mid)) l = mid;
else r = mid;
}
printf("%.2lf\n", l);
}

bzoj 3597: [Scoi2014]方伯伯运椰子 [01分数规划 消圈定理 spfa负环]的更多相关文章

  1. bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 594  Solved: 360[Submit][Statu ...

  2. bzoj 3597: [Scoi2014]方伯伯运椰子 0/1分数规划

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 144  Solved: 78[Submit][Status ...

  3. bzoj 3597 [Scoi2014] 方伯伯运椰子 - 费用流 - 二分答案

    题目传送门 传送门 题目大意 给定一个费用流,每条边有一个初始流量$c_i$和单位流量费用$d_i$,增加一条边的1单位的流量需要花费$b_i$的代价而减少一条边的1单位的流量需要花费$a_i$的代价 ...

  4. bzoj 3597: [Scoi2014]方伯伯运椰子

    Description Input 第一行包含二个整数N,M 接下来M行代表M条边,表示这个交通网络 每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di 接下来一行包含一条边,表示连接起点的边 Ou ...

  5. BZOJ3597 SCOI2014方伯伯运椰子(分数规划+spfa)

    即在总流量不变的情况下调整每条边的流量.显然先二分答案变为求最小费用.容易想到直接流量清空跑费用流,但复杂度略有些高. 首先需要知道(不知道也行?)一种平时基本不用的求最小费用流的算法——消圈法.算法 ...

  6. 3597: [Scoi2014]方伯伯运椰子[分数规划]

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MB Submit: 404  Solved: 249 [Submit][Sta ...

  7. 【BZOJ3597】方伯伯运椰子(分数规划,网络流)

    [BZOJ3597]方伯伯运椰子(分数规划,网络流) 题解 给定了一个满流的费用流模型 如果要修改一条边,那么就必须满足流量平衡 也就是会修改一条某两点之间的路径上的所有边 同时还有另外一条路径会进行 ...

  8. BZOJ 3597 SCOI2014 方伯伯送椰子 网络流分析+SPFA

    原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3597 Description 四川的方伯伯为了致富,决定引进海南的椰子树.方伯伯的椰子园十 ...

  9. [SCOI2014]方伯伯运椰子

    嘟嘟嘟 01分数规划思维题. 题中要求交通总量不减少,那么如果总量增加的话,总费用就会增加,所以一定不是更优的解.那么总量守恒. 这是不是就想到了网络流?对于每一个节点流入量等于流出量.然后就是很有思 ...

随机推荐

  1. angular $modal模态框

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  2. 如何让低版本IE浏览器支持HTML5标签并为其设置样式

    现代的浏览器都支持HTML5,HTML5定义了 8 个新的 HTML 语义元素.所有这些元素都是 块级 元素. 为了能让旧版本的浏览器正确显示这些元素,你可以设置 CSS 的 display 属性值为 ...

  3. SDP(1):ScalikeJDBC-基本操作介绍

    简单来说:JDBC是一种开放标准的跨编程语言.跨数据库类型编程API.各类型数据库产品厂商都会按它的标准要求来提供针对自身产品的JDBC驱动程序.最主要的这是一套成熟的工具,在编程人员中使用很普及.既 ...

  4. 数据库01创建表和DML语言

    楼主用的数据库时mysql,用的时navacat for mysql. 数据库层面: 1.显示所有数据库 show databases; 2.创建数据库,名字叫lyh,编码为utf-8 create ...

  5. TP框架自带的正则验证的规则

    thinkphp框架里面自带有很多自动验证的规则,下面是框架自带的正则验证的规则,官方的说明文档里面没有这么多,所以记下来,以备使用. view sourceprint? 01 static $reg ...

  6. 认识Java(2)

    注释 对程序的一段文字描述 可方便其他用户的阅读,增加代码的可读性.可以注销掉代码,等需要的时候再用. 编译器会自动忽视被注释的内容. 分类: 单行注释 // 多行注释 /* */ 文档注释/** * ...

  7. CPU频率

    CPU频率 CPU频率,就是CPU的时钟频率,简单说是CPU运算时的工作的频率(1秒内发生的同步脉冲数)的简称. 概念 CPU频率,就是CPU的时钟频率,简单说是CPU运算时的工作的频率(1秒内发生的 ...

  8. CCF系列之最大的矩形(201312-3)

    试题名称: 最大的矩形 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 在横轴上放了n个相邻的矩形,每个矩形的宽度是1,而第i(1 ≤ i ≤ n)个矩形的高度是hi.这n个矩 ...

  9. Java进阶篇(六)——Swing程序设计(上)

    Swing是GUI(图形用户界面)开发工具包,内容有很多,这里会分块编写,但在进阶篇中只编写Swing中的基本要素,包括容器.组件和布局等,更深入的内容会在高级篇中出现.想深入学习的朋友们可查阅有关资 ...

  10. 2017-06-23(chmod whoami chown)

    文件权限设定 chmod u-x newfile chmod u-x,g+w newfile chmod a=rwx newfile [mode=421] r = 4 , w=2, x=1 chmod ...