2016-2017 National Taiwan University World Final Team Selection Contest J - Zero Game
题目:
You are given one string S consisting of only '0' and '1'. You are bored, so you start to play with the string. In each operation, you can move any character of this string to some other position in the string. For example, suppose . Then you can move the first zero to the tail, and S will become '0100'.
Additionally, you have Q numbers K1, K2, ..., KQ. For each i, you wonder what can be the maximum number of consecutive zeroes in the string if you start with S and use at most Ki operations. In order to satisfy your curiosity, please write a program which will find the answers for you.
Input
The first line of input contains one string S. The second line of input contains one integer Q. Each of the following Q lines contains one integer Ki indicating the maximum number of operations in i-th query.
- 2 ≤ N ≤ 106
- the length of S is exactly N characters
- S consists of only '0' and '1'
- 1 ≤ Q ≤ 105
- N × Q ≤ 2 × 107
- 1 ≤ Ki ≤ 106
Output
For each query, output one line containing one number: the answer for this query.
Example
0000110000111110
5
1
2
3
4
5
5
8
9
9
9 思路:
对于每个区间[l,r],如果sum[r]-sum[l-1]<=k,则说明可以区间内所有1踢掉,然后还可以加入k-(sum[r]-sum[l1])个0进来。
所以合法区间的贡献为(2*sum[l-1]-l)+(r-2*sum[r])+k+1.
将判断合法的等式变形,可以得到:sum[r]-k<=sum[l-1]
可以看出合法的r单调,所以可以枚举l,用单调队列维护答案。
#include <bits/stdc++.h> using namespace std; #define MP make_pair
#define PB push_back
typedef long long LL;
typedef pair<int,int> PII;
const double eps=1e-;
const double pi=acos(-1.0);
const int K=1e6+;
const int mod=1e9+; int n,m,k,sum[K],q[K];
char ss[K];
int main(void)
{
scanf("%s",ss+);
n=strlen(ss+);
for(int i=;i<=n;i++) sum[i]=sum[i-]+(ss[i]==''?:);
scanf("%d",&m);
while(m--)
{
int k,ans=,st=,se=;
scanf("%d",&k);
for(int i=,j=;i<=n;i++)
{
while(j<=n&&sum[j]-k<=sum[i-])
{
while(st>se&&q[st]-*sum[q[st]]<=j-*sum[j]) st--;
q[++st]=j++;
}
while(st>se&&q[se+]<i) se++;
ans=max(ans,*sum[i-]-i+q[se+]-*sum[q[se+]]+k+);
}
ans=max(,ans);
ans=min(ans,n-sum[n]);
printf("%d\n",ans);
}
return ;
}
2016-2017 National Taiwan University World Final Team Selection Contest J - Zero Game的更多相关文章
- 2016-2017 National Taiwan University World Final Team Selection Contest
A. Hacker Cups and Balls 二分答案,将$\geq mid$的数看成$1$,$<mid$的数看成$0$,用线段树进行区间排序检查即可.时间复杂度$O(n\log^2n)$. ...
- 2016-2017 National Taiwan University World Final Team Selection Contest (Codeforces Gym) 部分题解
D 考虑每个点被删除时其他点对它的贡献,然后发现要求出距离为1~k的点对有多少个. 树分治+FFT.分治时把所有点放一起做一遍FFT,然后减去把每棵子树单独做FFT求出来的值. 复杂度$nlog^ ...
- 2016-2017 National Taiwan University World Final Team Selection Contest C - Crazy Dreamoon
题目:Statements Dreamoon likes algorithm competitions very much. But when he feels crazy because he ca ...
- 2016-2017 National Taiwan University World Final Team Selection Contest A - Hacker Cups and Balls
题目: Dreamoon likes algorithm competitions very much. But when he feels crazy because he cannot figur ...
- sdut 2162:The Android University ACM Team Selection Contest(第二届山东省省赛原题,模拟题)
The Android University ACM Team Selection Contest Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里 ...
- 【转】2016/2017 Web 开发者路线图
链接:知乎 [点击查看大图] 原图来自LearnCodeAcademy最火的视频,learncode是YouTube上最火的Web开发教学频道,介绍包括HTML/CSS/JavaScript/Subl ...
- luogu 1327 数列排序 & 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 J题 循环节
luogu 1327 数列排序 题意 给定一个数列\(\{an\}\),这个数列满足\(ai≠aj(i≠j)\),现在要求你把这个数列从小到大排序,每次允许你交换其中任意一对数,请问最少需要几次交换? ...
- Moscow Pre-Finals Workshop 2016. National Taiwan U Selection
A. As Easy As Possible 每个点往右贪心找最近的点,可以得到一棵树,然后倍增查询即可. 时间复杂度$O((n+m)\log n)$. #include <bits/stdc+ ...
- Mindjet MindManager 2016/2017 折腾记录
https://community.mindjet.com/mindjet/topics/ensure-2017-64-bit-version-installation Mindmanager sho ...
随机推荐
- superresolution_v_2.0 Application超分辨率程序文档
SUPERRESOLUTION GRAPHICAL USER INTERFACE DOCUMENTATION Contents 1.- How to use this application. 2.- ...
- Linux命令之乐--read
read 命令从标准输入中读取一行,并把输入行的每个字段的值指定给 shell 变量 -p:后接屏幕输出的提示语句 -n:设定输入的字符个数,当达到指定的个数则自动退出,并将输入赋予给变量 -t:当输 ...
- 面试题思考:Java RMI与RPC,JMS的比较
RPC:(Remote Procedure Call) 被设计为在应用程序间通信的平台中立的方式,它不理会操作系统之间以及语言之间的差异. 支持多语言 RMI:(Remote Method Invo ...
- LeetCode 笔记系列七 Substring with Concatenation of All Words
题目:You are given a string, S, and a list of words, L, that are all of the same length. Find all star ...
- Vue基础-在模板中使用过滤器
Vue 测试版本:Vue.js v2.5.13 官网给了过滤器的两种使用方式: 1.你可以在一个组件的选项中定义本地的过滤器: 结合实例,我给两个代码: <div id="app&qu ...
- 关于ios7 UINavigationController.interactivePopGestureRecognizer手势集成
因为公司业务需求,结合网上的资料整理了一下. 如果自定义过navbar的leftbarbutton 或者backbarbutton 原生interactivePopGestureRecognizer默 ...
- webservice接口问题:Payload: No message body writer has been found for class domain, ContentType: application/xml
当在使用cxf-rs的webservice的时候,有时候在传输数据,会发生这种错误 错误代码: Response-Code: 500 Content-Type: text/plain Headers: ...
- vue下登录页背景图上下空白处自适应等高
遇到需求,登录页面需要顶部和底部上下等高,并且随着浏览器自适应上下高度. 解决方法: vue界面的data中先定义 data() { return { windowHeight: "&quo ...
- 剑指Offer——数组中只出现一次的数字
题目描述: 一个整型数组里除了两个数字之外,其他的数字都出现了两次.请写程序找出这两个只出现一次的数字. 分析: 数组中一共有偶数个数.两个数字只出现过一次. 相同数异或在一起等于0,那么将所有数异或 ...
- qemu网络虚拟化之数据流向分析二
2016-09-27 上篇文章大致介绍了qemu网络虚拟化相关的数据结构,本篇就结合qemu-kvm源代码分析下各个数据结构是如何初始化以及建立联系的. 这里还是分为三个部分: 1.Tap设备区 2. ...