题目:

You are given one string S consisting of only '0' and '1'. You are bored, so you start to play with the string. In each operation, you can move any character of this string to some other position in the string. For example, suppose . Then you can move the first zero to the tail, and S will become '0100'.

Additionally, you have Q numbers K1, K2, ..., KQ. For each i, you wonder what can be the maximum number of consecutive zeroes in the string if you start with S and use at most Ki operations. In order to satisfy your curiosity, please write a program which will find the answers for you.

Input

The first line of input contains one string S. The second line of input contains one integer Q. Each of the following Q lines contains one integer Ki indicating the maximum number of operations in i-th query.

  • 2 ≤ N ≤ 106
  • the length of S is exactly N characters
  • S consists of only '0' and '1'
  • 1 ≤ Q ≤ 105
  • N × Q ≤ 2 × 107
  • 1 ≤ Ki ≤ 106

Output

For each query, output one line containing one number: the answer for this query.

Example

Input
0000110000111110
5
1
2
3
4
5
Output
5
8
9
9
9 思路:
  对于每个区间[l,r],如果sum[r]-sum[l-1]<=k,则说明可以区间内所有1踢掉,然后还可以加入k-(sum[r]-sum[l1])个0进来。
  所以合法区间的贡献为(2*sum[l-1]-l)+(r-2*sum[r])+k+1.
  将判断合法的等式变形,可以得到:sum[r]-k<=sum[l-1]
  可以看出合法的r单调,所以可以枚举l,用单调队列维护答案。
 #include <bits/stdc++.h>

 using namespace std;

 #define MP make_pair
#define PB push_back
typedef long long LL;
typedef pair<int,int> PII;
const double eps=1e-;
const double pi=acos(-1.0);
const int K=1e6+;
const int mod=1e9+; int n,m,k,sum[K],q[K];
char ss[K];
int main(void)
{
scanf("%s",ss+);
n=strlen(ss+);
for(int i=;i<=n;i++) sum[i]=sum[i-]+(ss[i]==''?:);
scanf("%d",&m);
while(m--)
{
int k,ans=,st=,se=;
scanf("%d",&k);
for(int i=,j=;i<=n;i++)
{
while(j<=n&&sum[j]-k<=sum[i-])
{
while(st>se&&q[st]-*sum[q[st]]<=j-*sum[j]) st--;
q[++st]=j++;
}
while(st>se&&q[se+]<i) se++;
ans=max(ans,*sum[i-]-i+q[se+]-*sum[q[se+]]+k+);
}
ans=max(,ans);
ans=min(ans,n-sum[n]);
printf("%d\n",ans);
}
return ;
}

2016-2017 National Taiwan University World Final Team Selection Contest J - Zero Game的更多相关文章

  1. 2016-2017 National Taiwan University World Final Team Selection Contest

    A. Hacker Cups and Balls 二分答案,将$\geq mid$的数看成$1$,$<mid$的数看成$0$,用线段树进行区间排序检查即可.时间复杂度$O(n\log^2n)$. ...

  2. 2016-2017 National Taiwan University World Final Team Selection Contest (Codeforces Gym) 部分题解

      D 考虑每个点被删除时其他点对它的贡献,然后发现要求出距离为1~k的点对有多少个. 树分治+FFT.分治时把所有点放一起做一遍FFT,然后减去把每棵子树单独做FFT求出来的值. 复杂度$nlog^ ...

  3. 2016-2017 National Taiwan University World Final Team Selection Contest C - Crazy Dreamoon

    题目:Statements Dreamoon likes algorithm competitions very much. But when he feels crazy because he ca ...

  4. 2016-2017 National Taiwan University World Final Team Selection Contest A - Hacker Cups and Balls

    题目: Dreamoon likes algorithm competitions very much. But when he feels crazy because he cannot figur ...

  5. sdut 2162:The Android University ACM Team Selection Contest(第二届山东省省赛原题,模拟题)

    The Android University ACM Team Selection Contest Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里 ...

  6. 【转】2016/2017 Web 开发者路线图

    链接:知乎 [点击查看大图] 原图来自LearnCodeAcademy最火的视频,learncode是YouTube上最火的Web开发教学频道,介绍包括HTML/CSS/JavaScript/Subl ...

  7. luogu 1327 数列排序 & 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 J题 循环节

    luogu 1327 数列排序 题意 给定一个数列\(\{an\}\),这个数列满足\(ai≠aj(i≠j)\),现在要求你把这个数列从小到大排序,每次允许你交换其中任意一对数,请问最少需要几次交换? ...

  8. Moscow Pre-Finals Workshop 2016. National Taiwan U Selection

    A. As Easy As Possible 每个点往右贪心找最近的点,可以得到一棵树,然后倍增查询即可. 时间复杂度$O((n+m)\log n)$. #include <bits/stdc+ ...

  9. Mindjet MindManager 2016/2017 折腾记录

    https://community.mindjet.com/mindjet/topics/ensure-2017-64-bit-version-installation Mindmanager sho ...

随机推荐

  1. [转]VC++下使用ADO操作数据库

    (1).引入ADO类 1 2 3 #import "c:program filescommon filessystemadomsado15.dll" no_namespace re ...

  2. hdu4525

    可以发现天的操作相当于*(k1+k2) 然后就很好判断了. 威威猫系列故事——吃鸡腿 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 6 ...

  3. C 语言开发初涉-01 简单学习

    尝试用C语言写windows程序: 简单的计算器 1.0版,仅用来熟悉C 开发windows的一些语法和语句用法 #include "stdafx.h" #include < ...

  4. js实现购物车(源码)

    首先是页面布局html+css部分 <!doctype html><html lang="en"> <head>  <meta chars ...

  5. 160603、使用pd4ml.jar和ss_css2.jar转pdf的工具类

    注意:需要导入pd4ml.jar和ss_css2.jar import java.awt.Insets;import java.io.BufferedInputStream;import java.i ...

  6. HDU 4417 Super Mario(线段树)

    Super Mario Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  7. GITLAB服务基础

    1.GITLAB介绍 一个基于GIT的源码托管解决方案基于Ruby on rails开发集成了nginx postgreSQL redis sidekiq等组件 2. 资源 官网:https://ab ...

  8. NoSQL文章

    MongoDB Bugsnag的MongoDB分片集群使用经验

  9. 转载:futex同步机制详解

    在编译2.6内核的时候,你会在编译选项中看到[*] Enable futex support这一项,上网查,有的资料会告诉你"不选这个内核不一定能正确的运行使用glibc的程序", ...

  10. Linux下的内核抢占

    2017-03-03 很遗憾之前在介绍进程调度的文章中,虽然涉及到了内核抢占,但是却没有对其进行深入介绍,今天就稍微总结下内核抢占. 内核抢占在一定程度上减少了对某种事件的响应延迟,这也是内核抢占被引 ...