To the Max
 

Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
As an example, the maximal sub-rectangle of the array:

0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 
is in the lower left corner:

9 2 
-4 1 
-1 8 
and has a sum of 15. 

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1 8 0 -2

Sample Output

15

Source

思路:经典dp(yan 教的)

#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll __int64
#define mod 1000000007
#define pi (4*atan(1.0))
const int N=1e3+,M=1e6+,inf=1e9+;
int a[N][N];
int sum[N][N];
int num[N];
int main()
{
int x,y,z,i,t;
while(~scanf("%d",&x))
{
memset(sum,,sizeof(sum));
for(i=;i<=x;i++)
for(t=;t<=x;t++)
scanf("%d",&a[i][t]);
for(i=;i<=x;i++)
for(t=;t<=x;t++)
sum[t][i]=sum[t-][i]+a[t][i];
int maxx=-inf;
for(i=;i<=x;i++)
{
for(t=i;t<=x;t++)
{
for(int j=;j<=x;j++)
num[j]=sum[t][j]-sum[i-][j];
int sum=;
for(int j=;j<=x;j++)
{
sum+=num[j];
maxx=max(maxx,sum);
if(sum<)
sum=;
}
}
}
printf("%d\n",maxx);
}
return ;
}
 

poj 1050 To the Max 最大子矩阵和 经典dp的更多相关文章

  1. POJ 1050 To the Max 最大子矩阵和(二维的最大字段和)

    传送门: http://poj.org/problem?id=1050 To the Max Time Limit: 1000MS   Memory Limit: 10000K Total Submi ...

  2. poj 1050 To the Max(最大子矩阵之和)

    http://poj.org/problem?id=1050 我们已经知道求最大子段和的dp算法 参考here  也可参考编程之美有关最大子矩阵和部分. 然后将这个扩大到二维就是这道题.顺便说一下,有 ...

  3. poj 1050 To the Max(最大子矩阵之和,基础DP题)

    To the Max Time Limit: 1000MSMemory Limit: 10000K Total Submissions: 38573Accepted: 20350 Descriptio ...

  4. POJ 1050 To the Max (最大子矩阵和)

    题目链接 题意:给定N*N的矩阵,求该矩阵中和最大的子矩阵的和. 题解:把二维转化成一维,算下就好了. #include <cstdio> #include <cstring> ...

  5. poj 1050 To the Max(线性dp)

    题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...

  6. [ACM_动态规划] POJ 1050 To the Max ( 动态规划 二维 最大连续和 最大子矩阵)

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

  7. hdu 1081 &amp; poj 1050 To The Max(最大和的子矩阵)

    转载请注明出处:http://blog.csdn.net/u012860063 Description Given a two-dimensional array of positive and ne ...

  8. poj - 1050 - To the Max(dp)

    题意:一个N * N的矩阵,求子矩阵的最大和(N <= 100, -127 <= 矩阵元素 <= 127). 题目链接:http://poj.org/problem?id=1050 ...

  9. POJ 1050 To the Max 暴力,基础知识 难度:0

    http://poj.org/problem?id=1050 设sum[i][j]为从(1,1)到(i,j)的矩形中所有数字之和 首先处理出sum[i][j],此时左上角为(x1,y1),右下角为(x ...

随机推荐

  1. 转Hibernate Annotation mappedBy注解理解

    在Annotation 中有这么一个@mappedBy 属性注解,相信有些同学还是对这个属性有些迷惑,上网找了些理解@mappedBy比较深刻的资料,下面贴出来供大家参考. http://xiaoru ...

  2. C++学习笔记-操作符重载

    操作符重载(operator overloading)是一种形式的C++多态,C++将操作符重载扩展到用户自定义的类型,如允许使用+将两个自定义的对象相加,编译器将根据操作数的数目和类型决定使用那种加 ...

  3. ORM中的related_name

    ORM 的反向查找(related_name) 先定义两个模型,一个是A,一个是B,是一对多的类型. class A(models.Model): name= models.CharField('名称 ...

  4. SQL Server窗口框架——ROWS、RANGE

    说到窗口框架就不得不提起开窗函数. 开窗函数支持分区.排序和框架三种元素,其语法格式如下: OVER ( [ <PARTITION BY clause> ] [ <ORDER BY ...

  5. POJ 3253 Fence Repair(简单哈弗曼树_水过)

    题目大意:原题链接 锯木板,锯木板的长度就是花费.比如你要锯成长度为8 5 8的木板,最简单的方式是把21的木板割成13,8,花费21,再把13割成5,8,花费13,共计34,当然也可以先割成16,5 ...

  6. JavaScript-dom1

    获取事件源 var div = document.getElementById("box"); // var arr1 = document.getElementsByTagNam ...

  7. ZOJ - 3229 Shoot the Bullet (有源汇点上下界最大流)

    题意:要在n天里给m个女生拍照,每个女生有拍照数量的下限Gi,每天有拍照数量的上限Di,每天当中每个人有拍照的上限Lij和Rij.求在满足限制的基础上,所有人最大能拍多少张照片. 分析:抛开限制,显然 ...

  8. Mysql中间件_haproxy在启动过程中报错_Starting proxy : cannot bind socket

    在搭建好haproxy准备启动中,使用service命令的方式启动没有报任何错误,但是监听服务发现并没有想象的顺利,搜索各种帖子,参考对照发现,发现一条新的命令,^_^,试着用下面命令启动,惊喜~发现 ...

  9. Junit中的setup和teardown方法

    setup需要@before注解,实现测试前的初始化工作 teardown需要@after注解,测试完成后垃圾回收等后续工作

  10. python3.6连接mysql或者mariadb

    python3.6版本的安装查看上一篇文章 mysql或mariadb数据库的安装查看以前的文章,这里不再赘述 首先在mariadb数据库中创建相应的库和表: MariaDB [(none)]> ...