http://www.lydsy.com/JudgeOnline/problem.php?id=1630

题意,给你n种数,数量为m个,求所有的数组成的集合选长度l~r的个数

后两者待会写。。

裸dp其实应该会tle的额,但是数据弱?

d[i][j]表示前i种j长度的数量

d[i][j]=sum{d[i-1][j-k]} 1<=k<=a[i]

会爆mle。但是发现这是裸动态数组。。

注意顺序即可

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=1005, md=1e6;
int a[N], n, m, f[N*100], l, r, ans; int main() {
read(n); read(m); read(l); read(r);
for1(i, 1, m) ++a[getint()];
for1(i, 0, a[1]) f[i]=1;
for1(i, 2, n) {
for3(j, r, 0)
for1(k, 1, a[i]) if(j<k) break; else f[j]=(f[j]+f[j-k])%md;
}
for1(i, l, r) ans=(ans+f[i])%md;
printf("%d", ans);
return 0;
}

然后是前缀和一优化

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=1005, md=1e6;
int a[N], n, m, f[N*100], sum[N*100], l, r, ans; int main() {
read(n); read(m); read(l); read(r);
for1(i, 1, m) ++a[getint()];
f[0]=1;
for1(i, 1, n) {
sum[0]=1;
for1(j, 1, r) sum[j]=(sum[j-1]+f[j])%md;
for3(j, r, 1)
if(j<=a[i]) f[j]=sum[j]%md;
else f[j]=(sum[j]-sum[j-a[i]-1])%md;
}
for1(i, l, r) ans=(ans+f[i])%md;
printf("%d", ans);
return 0;
}

Description

Bessie was poking around the ant hill one day watching the ants march to and fro while gathering food. She realized that many of the ants were siblings, indistinguishable from one another. She also realized the sometimes only one ant would go for food, sometimes a few, and sometimes all of them. This made for a large number of different sets of ants! Being a bit mathematical, Bessie started wondering. Bessie noted that the hive has T (1 <= T <= 1,000) families of ants which she labeled 1..T (A ants altogether). Each family had some number Ni (1 <= Ni <= 100) of ants. How many groups of sizes S, S+1, ..., B (1 <= S <= B <= A) can be formed? While observing one group, the set of three ant families was seen as {1, 1, 2, 2, 3}, though rarely in that order. The possible sets of marching ants were: 3 sets with 1 ant: {1} {2} {3} 5 sets with 2 ants: {1,1} {1,2} {1,3} {2,2} {2,3} 5 sets with 3 ants: {1,1,2} {1,1,3} {1,2,2} {1,2,3} {2,2,3} 3 sets with 4 ants: {1,2,2,3} {1,1,2,2} {1,1,2,3} 1 set with 5 ants: {1,1,2,2,3} Your job is to count the number of possible sets of ants given the data above. //有三个家庭的ANT,共五只,分别编号为1,2,2,1,3,现在将其分为2个集合及3集合,有多少种分法

Input

* Line 1: 4 space-separated integers: T, A, S, and B * Lines 2..A+1: Each line contains a single integer that is an ant type present in the hive

Output

* Line 1: The number of sets of size S..B (inclusive) that can be created. A set like {1,2} is the same as the set {2,1} and should not be double-counted. Print only the LAST SIX DIGITS of this number, with no leading zeroes or spaces.

Sample Input

3 5 2 3
1
2
2
1
3

INPUT DETAILS:

Three types of ants (1..3); 5 ants altogether. How many sets of size 2 or
size 3 can be made?

Sample Output

10

OUTPUT DETAILS:

5 sets of ants with two members; 5 more sets of ants with three members

HINT

Source

【BZOJ】1630: [Usaco2007 Demo]Ant Counting(裸dp/dp/生成函数)的更多相关文章

  1. bzoj 1630: [Usaco2007 Demo]Ant Counting【dp】

    满脑子组合数学,根本没想到dp 设f[i][j]为前i只蚂蚁,选出j只的方案数,初始状态为f[0][0]=1 转移为 \[ f[i][j]=\sum_{k=0}^{a[i]}f[i-1][j-k] \ ...

  2. 【BZOJ1630/2023】[Usaco2007 Demo]Ant Counting DP

    [BZOJ1630/2023][Usaco2007 Demo]Ant Counting 题意:T中蚂蚁,一共A只,同种蚂蚁认为是相同的,有一群蚂蚁要出行,个数不少于S,不大于B,求总方案数 题解:DP ...

  3. bzoj2023[Usaco2005 Nov]Ant Counting 数蚂蚁*&&bzoj1630[Usaco2007 Demo]Ant Counting*

    bzoj2023[Usaco2005 Nov]Ant Counting 数蚂蚁&&bzoj1630[Usaco2007 Demo]Ant Counting 题意: t个族群,每个族群有 ...

  4. bzoj1630 [Usaco2007 Demo]Ant Counting

    Description Bessie was poking around the ant hill one day watching the ants march to and fro while g ...

  5. bzoj1630/2023 [Usaco2007 Demo]Ant Counting

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1630 http://www.lydsy.com/JudgeOnline/problem.ph ...

  6. bzoj 2023: [Usaco2005 Nov]Ant Counting 数蚂蚁【生成函数||dp】

    用生成函数套路推一推,推完老想NTT--实际上把这个多项式乘法看成dp然后前缀和优化一下即可 #include<iostream> #include<cstdio> using ...

  7. BZOJ 2023 [Usaco2005 Nov]Ant Counting 数蚂蚁:dp【前缀和优化】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2023 题意: 有n个家族,共m只蚂蚁(n <= 1000, m <= 1000 ...

  8. BZOJ 1642: [Usaco2007 Nov]Milking Time 挤奶时间( dp )

    水dp 先按开始时间排序 , 然后dp. dp( i ) 表示前 i 个时间段选第 i 个时间段的最优答案 , 则 dp( i ) = max( dp( j ) ) + w_i ( 0 < j ...

  9. BZOJ2023: [Usaco2005 Nov]Ant Counting 数蚂蚁(dp)

    题意 题目描述的很清楚...  有一天,贝茜无聊地坐在蚂蚁洞前看蚂蚁们进进出出地搬运食物.很快贝茜发现有些蚂蚁长得几乎一模一样,于是她认为那些蚂蚁是兄弟,也就是说它们是同一个家族里的成员.她也发现整个 ...

随机推荐

  1. 算法笔记_134:字符串编辑距离(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 给定一个源串和目标串,能够进行如下操作: 在任意位置上插入一个字符: 替换掉任意字符: 删除任意字符. 写一个程序,实现返回最小操作次数,使得对源串 ...

  2. sql server 数据库备份历史记录

    sql server 数据库备份历史记录 SELECT ),SERVERPROPERTY('Servername'))AS Server, bs.database_name, bs.backup_st ...

  3. 配置tomcat的session共享

    可通过下面方法限制一个用户访问一个服务器之后就只在该服务器上操作. 请求负载过程中会话信息不能丢失.那么在多个tomcat中session需要共享. 配置tomcat的session共享可以有三种解决 ...

  4. 打通前后端全栈开发node+vue进阶【课程学习系统项目实战详细讲解】(3):用户添加/修改/删除 vue表格组件 vue分页组件

    第三章 建议学习时间8小时      总项目预计10章 学习方式:详细阅读,并手动实现相关代码(如果没有node和vue基础,请学习前面的vue和node基础博客[共10章] 演示地址:后台:demo ...

  5. Linux命令-压缩解压命令:tar

    tar [选项] [打包后文件名] [打包前的文件或者目录名称] -c表示创建(create-创建) -z表示压缩(gzip-压缩) -j表示压缩(bzip2-压缩) -v显示进度(verbose-冗 ...

  6. tsung的配置使用

    1.在root下新建.tsung文件,在.tsung文件新建log文件夹..tsung文件用于存放log和xml文件 2.复制/usr/local/tsung/share/doc/tsung/exam ...

  7. 解决C# WINFORM程序只允许运行一个实例的几种方法详解

    要实现程序的互斥,通常有下面几种方式,下面用 C# 语言来实现: 方法一: 使用线程互斥变量. 通过定义互斥变量来判断是否已运行实例. 把program.cs文件里的Main()函数改为如下代码: u ...

  8. csrf跨站请求攻击

    浅谈CSRF攻击方式    http://www.cnblogs.com/hyddd/archive/2009/04/09/1432744.html

  9. Android 依赖注入: Dagger 2 实例解说(一)

    本文原创,转载请注明出处:http://blog.csdn.net/zjbpku [Duplicated]   link to  Dagger on Android - Dagger2具体解释 关于D ...

  10. AESDK从流中获得变换信息

    AE中Transform下的信息位于流中,和别的软件不太一样. 如果是特效的参数信息要从EffectSuites中获取,默认的参数信息基本上StreamSuites都可以得到 需要注意,取得流之后也要 ...