http://www.lydsy.com/JudgeOnline/problem.php?id=1630

题意,给你n种数,数量为m个,求所有的数组成的集合选长度l~r的个数

后两者待会写。。

裸dp其实应该会tle的额,但是数据弱?

d[i][j]表示前i种j长度的数量

d[i][j]=sum{d[i-1][j-k]} 1<=k<=a[i]

会爆mle。但是发现这是裸动态数组。。

注意顺序即可

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=1005, md=1e6;
int a[N], n, m, f[N*100], l, r, ans; int main() {
read(n); read(m); read(l); read(r);
for1(i, 1, m) ++a[getint()];
for1(i, 0, a[1]) f[i]=1;
for1(i, 2, n) {
for3(j, r, 0)
for1(k, 1, a[i]) if(j<k) break; else f[j]=(f[j]+f[j-k])%md;
}
for1(i, l, r) ans=(ans+f[i])%md;
printf("%d", ans);
return 0;
}

然后是前缀和一优化

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=1005, md=1e6;
int a[N], n, m, f[N*100], sum[N*100], l, r, ans; int main() {
read(n); read(m); read(l); read(r);
for1(i, 1, m) ++a[getint()];
f[0]=1;
for1(i, 1, n) {
sum[0]=1;
for1(j, 1, r) sum[j]=(sum[j-1]+f[j])%md;
for3(j, r, 1)
if(j<=a[i]) f[j]=sum[j]%md;
else f[j]=(sum[j]-sum[j-a[i]-1])%md;
}
for1(i, l, r) ans=(ans+f[i])%md;
printf("%d", ans);
return 0;
}

Description

Bessie was poking around the ant hill one day watching the ants march to and fro while gathering food. She realized that many of the ants were siblings, indistinguishable from one another. She also realized the sometimes only one ant would go for food, sometimes a few, and sometimes all of them. This made for a large number of different sets of ants! Being a bit mathematical, Bessie started wondering. Bessie noted that the hive has T (1 <= T <= 1,000) families of ants which she labeled 1..T (A ants altogether). Each family had some number Ni (1 <= Ni <= 100) of ants. How many groups of sizes S, S+1, ..., B (1 <= S <= B <= A) can be formed? While observing one group, the set of three ant families was seen as {1, 1, 2, 2, 3}, though rarely in that order. The possible sets of marching ants were: 3 sets with 1 ant: {1} {2} {3} 5 sets with 2 ants: {1,1} {1,2} {1,3} {2,2} {2,3} 5 sets with 3 ants: {1,1,2} {1,1,3} {1,2,2} {1,2,3} {2,2,3} 3 sets with 4 ants: {1,2,2,3} {1,1,2,2} {1,1,2,3} 1 set with 5 ants: {1,1,2,2,3} Your job is to count the number of possible sets of ants given the data above. //有三个家庭的ANT,共五只,分别编号为1,2,2,1,3,现在将其分为2个集合及3集合,有多少种分法

Input

* Line 1: 4 space-separated integers: T, A, S, and B * Lines 2..A+1: Each line contains a single integer that is an ant type present in the hive

Output

* Line 1: The number of sets of size S..B (inclusive) that can be created. A set like {1,2} is the same as the set {2,1} and should not be double-counted. Print only the LAST SIX DIGITS of this number, with no leading zeroes or spaces.

Sample Input

3 5 2 3
1
2
2
1
3

INPUT DETAILS:

Three types of ants (1..3); 5 ants altogether. How many sets of size 2 or
size 3 can be made?

Sample Output

10

OUTPUT DETAILS:

5 sets of ants with two members; 5 more sets of ants with three members

HINT

Source

【BZOJ】1630: [Usaco2007 Demo]Ant Counting(裸dp/dp/生成函数)的更多相关文章

  1. bzoj 1630: [Usaco2007 Demo]Ant Counting【dp】

    满脑子组合数学,根本没想到dp 设f[i][j]为前i只蚂蚁,选出j只的方案数,初始状态为f[0][0]=1 转移为 \[ f[i][j]=\sum_{k=0}^{a[i]}f[i-1][j-k] \ ...

  2. 【BZOJ1630/2023】[Usaco2007 Demo]Ant Counting DP

    [BZOJ1630/2023][Usaco2007 Demo]Ant Counting 题意:T中蚂蚁,一共A只,同种蚂蚁认为是相同的,有一群蚂蚁要出行,个数不少于S,不大于B,求总方案数 题解:DP ...

  3. bzoj2023[Usaco2005 Nov]Ant Counting 数蚂蚁*&&bzoj1630[Usaco2007 Demo]Ant Counting*

    bzoj2023[Usaco2005 Nov]Ant Counting 数蚂蚁&&bzoj1630[Usaco2007 Demo]Ant Counting 题意: t个族群,每个族群有 ...

  4. bzoj1630 [Usaco2007 Demo]Ant Counting

    Description Bessie was poking around the ant hill one day watching the ants march to and fro while g ...

  5. bzoj1630/2023 [Usaco2007 Demo]Ant Counting

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1630 http://www.lydsy.com/JudgeOnline/problem.ph ...

  6. bzoj 2023: [Usaco2005 Nov]Ant Counting 数蚂蚁【生成函数||dp】

    用生成函数套路推一推,推完老想NTT--实际上把这个多项式乘法看成dp然后前缀和优化一下即可 #include<iostream> #include<cstdio> using ...

  7. BZOJ 2023 [Usaco2005 Nov]Ant Counting 数蚂蚁:dp【前缀和优化】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2023 题意: 有n个家族,共m只蚂蚁(n <= 1000, m <= 1000 ...

  8. BZOJ 1642: [Usaco2007 Nov]Milking Time 挤奶时间( dp )

    水dp 先按开始时间排序 , 然后dp. dp( i ) 表示前 i 个时间段选第 i 个时间段的最优答案 , 则 dp( i ) = max( dp( j ) ) + w_i ( 0 < j ...

  9. BZOJ2023: [Usaco2005 Nov]Ant Counting 数蚂蚁(dp)

    题意 题目描述的很清楚...  有一天,贝茜无聊地坐在蚂蚁洞前看蚂蚁们进进出出地搬运食物.很快贝茜发现有些蚂蚁长得几乎一模一样,于是她认为那些蚂蚁是兄弟,也就是说它们是同一个家族里的成员.她也发现整个 ...

随机推荐

  1. Xcode5 打包 发布配置

    http://www.cnblogs.com/zhaoqingqing/p/3553750.html 主题 Unity导出Xcode项目,使用Xocde打包ipa并提交到AppStore 步骤 1.设 ...

  2. ThinkPad如何修改fn键默认操作

    ThinkPad如何修改fn键默认操作 ThinkPad笔记本如何修改fn键默认操作 Fn键F1-F12

  3. DP SRM 661 Div2 Hard: ColorfulLineGraphsDiv2

    Problem Statement Bob is going to create a graph with N nodes. The graph will be constructed in two ...

  4. 【laravel54】创建控制器、模型

    1.创建控制器(可以带上下一级目录)=>(需要带Controller后缀) > php artisan make:controller self/StudentController; 2. ...

  5. python如何获取公众号下面粉丝的openid

    如何获取公众号下面粉丝的openid呢,首先要获取一个access_token,这个token可不是令牌(Token),如何获取这个access_token呢?有两种方法,方法如下: # -*- co ...

  6. Android 使用Scroller实现绚丽的ListView左右滑动删除Item效果

    转帖请注明本文出自xiaanming的博客(http://blog.csdn.net/xiaanming/article/details/17539199),请尊重他人的辛勤劳动成果,谢谢! 我在上一 ...

  7. shell 基础语法

    shell 基础语法 =============================================== 推荐:http://c.biancheng.net/cpp/shell/ ==== ...

  8. 不错的网络协议栈測试工具 — Packetdrill

    Packetdrill - A network stack testing tool developed by Google. 项目:https://code.google.com/p/packetd ...

  9. struts2防止表单重复提交的解决方案

    一.造成重复提交主要的两个原因:    在平时的开发过程中,经常可以遇到表单重复提交的问题,如做一个注册页面,如果表单重复提交,那么一个用户就会注册多次,重复提交主要由于两种原因. 1. 一是,服务器 ...

  10. hdoj 1026 Ignatius and the Princess I 最小步数,并且保存路径

    Ignatius and the Princess I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...