【洛谷 P3338】 [ZJOI2014]力(FFT)
\]
设\(A[i]=q[i]\),\(B[i]=\frac{1}{i^2}\),\(A\times B\)就能得到第一个\(\sum\),把\(A\)反过来再\(\times B\)就能得到第二个\(\sum\),相减即可。
用\(FFT\)算。
#include <cstdio>
#include <cmath>
#include <algorithm>
#define re register
using namespace std;
const int MAXN = 300010;
const double PI = M_PI;
struct complex{
double x, y;
complex(double xx = 0, double yy = 0){ x = xx; y = yy; }
}a[MAXN], b[MAXN];
inline complex operator + (complex a, complex b){
return complex(a.x + b.x, a.y + b.y);
}
inline complex operator - (complex a, complex b){
return complex(a.x - b.x, a.y - b.y);
}
inline complex operator * (complex a, complex b){
return complex(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
}
double q[MAXN], e[MAXN];
int r[MAXN], n, m;
void FFT(complex *f, int mode){
for(re int i = 0; i < m; ++i) if(i < r[i]) swap(f[i], f[r[i]]);
for(re int p = 2; p <= m; p <<= 1){
re int len = p >> 1;
re complex tmp(cos(PI / len), mode * sin(PI / len));
for(re int l = 0; l < m; l += p){
re complex w(1, 0);
for(re int k = l; k < l + len; ++k){
re complex t = w * f[len + k];
f[len + k] = f[k] - t;
f[k] = f[k] + t;
w = w * tmp;
}
}
}
}
int main(){
scanf("%d", &n);
for(re int i = 1; i <= n; ++i) scanf("%lf", &q[i]);
for(re int i = 1; i <= n; ++i) a[i].x = q[i], b[i].x = 1.0 / (1.0 * i * i);
for(m = 1; m <= (n << 1); m <<= 1);
for(re int i = 1; i < m; ++i) r[i] = r[i >> 1] >> 1 | ((i & 1) * (m >> 1));
FFT(a, 1); FFT(b, 1);
for(re int i = 0; i < m; ++i) a[i] = a[i] * b[i];
FFT(a, -1);
for(re int i = 1; i <= n; ++i) e[i] = a[i].x;
for(re int i = 0; i < m; ++i) a[i].x = b[i].x = a[i].y = b[i].y = 0;
for(re int i = 1; i <= n; ++i) a[i].x = q[n - i + 1], b[i].x = 1.0 / (1.0 * i * i);
FFT(a, 1); FFT(b, 1);
for(re int i = 0; i < m; ++i) a[i] = a[i] * b[i];
FFT(a, -1);
for(int i = 1; i <= n; ++i) printf("%.3lf\n", (e[i] - a[n - i + 1].x) / m);
return 0;
}
【洛谷 P3338】 [ZJOI2014]力(FFT)的更多相关文章
- [洛谷P3338] [ZJOI2014]力
洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...
- 洛谷 P3338 [ZJOI2014]力 解题报告
P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...
- 洛谷P3338 [ZJOI2014]力(FFT)
传送门 题目要求$$E_i=\frac{F_i}{q_i}=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^n\frac{q_j}{(j-i)^2}$ ...
- 洛谷 P3338 [ZJOI2014]力
题意简述 读入\(n\)个数\(q_i\) 设\(F_j = \sum\limits_{i<j}\frac{q_i\times q_j}{(i-j)^2 }-\sum\limits_{i> ...
- [bzoj3527] [洛谷P3338] [Zjoi2014]力
Description 给出n个数qi,给出Fj的定义如下: \[ F_j=\sum\limits_{i<j} \frac{q_iq_j}{(i-j)^2} - \sum\limits_{i&g ...
- P3338 [ZJOI2014]力(FFT)
题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...
- P3338 [ZJOI2014]力 /// FFT 公式转化翻转
题目大意: https://www.luogu.org/problemnew/show/P3338 题解 #include <bits/stdc++.h> #define N 300005 ...
- 洛咕 P3338 [ZJOI2014]力
好久没写过博客了.. 大力推式子就行了: \(E_i=\sum_{j<i}\frac{q_j}{(i-j)^2}+\sum_{j>i}\frac{q_j}{(j-i)^2}\) 那么要转化 ...
- [Luogu]P3338 [ZJOI2014]力(FFT)
题目描述 给出\(n\)个数\(q_i\),给出\(F_j\)的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\fr ...
- 【洛谷P3338】力
题目大意:求 \[ E_{j}=\sum_{i<j} \frac{q_{i}}{(i-j)^{2}}-\sum_{i>j} \frac{q_{i}}{(i-j)^{2}} \] 题解:可以 ...
随机推荐
- HDFS shell命令行常见操作
hadoop学习及实践笔记—— HDFS shell命令行常见操作 附:HDFS shell guide文档地址 http://hadoop.apache.org/docs/r2.5.2/hadoop ...
- 【第九周】psp
代码累计 300+575+475+353+620=2223 随笔字数 1700+3000+3785+4210+4333=17695 知识点 java反射机制 数据库技术 动态规划算法 pyth ...
- java读取xls和xlsx数据作为数据驱动来用
java读取Excle代码 拿来可以直接使用 :针对xls 和 xlsx package dataProvider; import java.io.File; import java.io.FileI ...
- ant 安装及基础教程 !
这篇文章主要介绍了ant使用指南详细入门教程,本文详细的讲解了安装.验证安装.使用方法.使用实例.ant命令等内容,需要的朋友可以参考下 一.概述 ant 是一个将软件编译.测试.部署等步骤联系在 ...
- 【Python】内置函数
一.内置函数表格 详细信息 二.内置函数详情 2.1 abs(x) 返回绝对值 1 2 >>> abs(-5) 5 2.2 all(iterable) 如果这个可迭代的元素都为真,就 ...
- Contest 9
A:搜索好难啊根本不会啊. B:暴力枚举给哪段前缀乘,维护一些前后缀最大最小值之类的东西就很好算了. #include<iostream> #include<cstdio> # ...
- NewCaffe
NewCaffe
- Ubuntu 10.04 配置TQ2440交叉编译环境
一.解压交叉编译开发工具包 EABI_4.3.3_EmbedSky_20100610.tar.bz2 $ sudo mkdir /opt/EmbedSky/ $ sudo cp -r /ho ...
- 2个 List<T>进行数据合并
var userF = new List<User>(); User m1 = new User() { Id = "0" }; userF.Add(m1); var ...
- Gradle及eclipse插件安装
1. 下载Gradle Gradle需要jdk7或以上版本,使用Java –version命令进行测试:Gradle自带了Groovy库,所以无需再安装Groovy,已经安装的Groovy会被Gra ...