【BZOJ】2553: [BeiJing2011]禁忌 AC自动机+期望+矩阵快速幂
【题意】给定n个禁忌字符串和字符集大小alphabet,保证所有字符在集合内。一个字符串的禁忌伤害定义为分割能匹配到最多的禁忌字符串数量(一个可以匹配多次),求由字符集构成的长度为Len的字符串的期望禁忌伤害。n<=5,1<=alphabet<=26,len<=10^9。
【算法】AC自动机+期望+矩阵快速幂
【题解】参考:BZOJ2553: [BeiJing2011]禁忌
首先对于一个确定的字符串,每个匹配的禁忌字符串视为一条线段,就是经典的不重叠最大线段数问题。
通用的贪心做法:按右端点排序,然后贪心能选就选。
对禁忌字符串建AC自动机,匹配到关键节点ans++并返回根重新匹配,这正好对应贪心过程(关键节点即字符串结尾,需要传递到所有以它为fail的节点)。
设f[i][j]表示串长 i 匹配到节点 j 的期望,根据全期望公式:(期望只能倒推……)
$$f[i][j]=\sum_{k=1}^{\alpha}\frac{1}{\alpha}*(f[i+1][ch(j,k)]+[ch(j,k)==0])$$
其中,ch(a,b)表示AC自动机中节点a+字符b转移到达的节点。
最后用矩阵快速幂优化转移(加一个常数项)。
听说炸精度,就不写代码了哈哈哈QwQ。
【BZOJ】2553: [BeiJing2011]禁忌 AC自动机+期望+矩阵快速幂的更多相关文章
- bzoj 2553: [BeiJing2011]禁忌 AC自动机+矩阵乘法
题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=2553 题解: 利用AC自动机的dp求出所有的转移 然后将所有的转移储存到矩阵中,进行矩阵 ...
- bzoj 2553 [BeiJing2011]禁忌——AC自动机+概率DP+矩阵
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2553 看了题解才会…… 首先,给定一个串,最好的划分方式是按禁忌串出现的右端点排序,遇到能填 ...
- 【BZOJ】4861: [Beijing2017]魔法咒语 AC自动机+DP+矩阵快速幂
[题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法 ...
- Luogu-3250 [BJOI2017]魔法咒语(AC自动机,矩阵快速幂)
Luogu-3250 [BJOI2017]魔法咒语(AC自动机,矩阵快速幂) 题目链接 题解: 多串匹配问题,很容易想到是AC自动机 先构建忌讳词语的AC自动机,构建时顺便记录一下这个点以及它的所有后 ...
- BZOJ2553 Beijing2011禁忌(AC自动机+动态规划+矩阵快速幂+概率期望)
考虑对一个串如何分割能取得最大值.那么这是一个经典的线段覆盖问题,显然每次取右端点尽量靠前的串.于是可以把串放在AC自动机上跑,找到一个合法串后就记录并跳到根. 然后考虑dp.设f[i][j]表示前i ...
- BZOJ.4180.字符串计数(后缀自动机 二分 矩阵快速幂/倍增Floyd)
题目链接 先考虑 假设S确定,使构造S操作次数最小的方案应是:对T建SAM,S在SAM上匹配,如果有S的转移就转移,否则操作数++,回到根节点继续匹配S.即每次操作一定是一次极大匹配. 简单证明:假设 ...
- 【BZOJ2553】[BeiJing2011]禁忌 AC自动机+期望DP+矩阵乘法
[BZOJ2553][BeiJing2011]禁忌 Description Magic Land上的人们总是提起那个传说:他们的祖先John在那个东方岛屿帮助Koishi与其姐姐Satori最终战平. ...
- [poj2778 DNA Sequence]AC自动机,矩阵快速幂
题意:给一些字符串的集合S和整数n,求满足 长度为n 只含charset = {'A'.'T‘.'G'.'C'}包含的字符 不包含S中任一字符串 的字符串的种类数. 思路:首先对S建立ac自动机,考虑 ...
- 【BZOJ 2553】[BeiJing2011]禁忌 AC自动机+期望概率dp
我一开始想的是倒着来,发现太屎,后来想到了一种神奇的方法——我们带着一个既有期望又有概率的矩阵,偶数(2*id)代表期望,奇数(2*id+1)代表概率,初始答案矩阵一列,1的位置为1(起点为0),工具 ...
随机推荐
- J2EE体系
J2EE的概念 目前,Java 2平台有3个版本,它们是适用于小型设备和智能卡的Java 2平台Micro版(Java 2 Platform Micro Edition,J2ME).适用于桌面系统的J ...
- 外部JS的阻塞下载
转载于:http://www.cnblogs.com/mofish/archive/2011/09/29/2195256.html 所有浏览器在下载JS的时候,会阻止一切其他活动,比如其他资源的下载, ...
- javascript之彻底理解闭包
闭包是函数和声明该函数的词法环境的组合. function init() { var name = "Mozilla"; // name 是一个被 init 创建的局部变量 fun ...
- WCF跨时区自动转换问题
背景:api端 用wcf做的 客户端是silverlight, 服务和消费 不是同一个时区 状况:客户端调用返回对象有个字段是datetime ,返回的时间和数据库相差好几个小时,找了很久,最后把da ...
- 【Python】Python处理csv文件
Python处理csv文件 CSV(Comma-Separated Values)即逗号分隔值,可以用Excel打开查看.由于是纯文本,任何编辑器也都可打开.与Excel文件不同,CSV文件中: 值没 ...
- BZOJ 2157 旅行(树链剖分码农题)
写了5KB,1发AC... 题意:给出一颗树,支持5种操作. 1.修改某条边的权值.2.将u到v的经过的边的权值取负.3.求u到v的经过的边的权值总和.4.求u到v的经过的边的权值最大值.5.求u到v ...
- 【uoj#192】[UR #14]最强跳蚤 Hash
题目描述 给定一棵 $n$ 个点的树,边有边权.求简单路径上的边的乘积为完全平方数的点对 $(x,y)\ ,\ x\ne y$ 的数目. 题解 Hash 一个数是完全平方数,当且仅当每个质因子出现次数 ...
- Android四大组件之Activity & Fragement(续)
1.Activity和Fragment的异同. Activity是UI界面交互的主体,而fragment是这个主体上的元素. 一个activity可以包含0到n个fragment. fragment可 ...
- day06 小数据池和编码
一. 上次课内容回顾字典:由{}括起来. 每个元素用逗号隔开, key:value的形式存储数据key: 不可变的. 可哈希的.增删改查:1. 增加: 直接用新key来赋值. dict[key] = ...
- 【转】ssh登录原理以及ssh免密码登陆
一.什么是SSH? 简单说,SSH是一种网络协议,用于计算机之间的加密登录. 如果一个用户从本地计算机,使用SSH协议登录另一台远程计算机,我们就可以认为,这种登录是安全的,即使被中途截获,密码也不会 ...