Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographically ordered basis on the space of tensors, the matrix for $A\otimes B$ can be written in block form as follows: if $A=(a_{ij})$, then $$\bex A\otimes B=\sex{\ba{ccc} a_{11}B&\cdots&a_{1n}B\\ \vdots&\ddots&\vdots\\ a_{n1}B&\cdots&a_{nn}B \ea}. \eex$$

Solution. Let $A\in \scrL(\scrH)$, $B\in \scrL(\scrK)$, and $e_1,\cdots,e_n$; $f_1,\cdots,f_m$ be the orthonormal basis of $\scrH$ and $\scrK$ respectively. Then $$\beex \bea (A\otimes B)(e_i\otimes f_j) &=(Ae_i)\otimes (Bf_j)\\ &=\sum_k a_{ki}e_k\otimes \sum_l b_{lj}f_l\\ &=\sum_{k,l}a_{ki}b_{lj}e_k\otimes f_l\\ &=\sex{e_1\otimes f_1,\cdots,e_1\otimes f_n,\cdots,e_n\otimes f_n}\sex{\ba{c} a_{1i}b_{1j}\\ \vdots\\ a_{1i}b_{nj}\\ \vdots\\ a_{ni}b_{nj} \ea}. \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 移动端webapp开发必备知识

    移动设备的用户越来越多,每天android手机的激活量都已经超过130万台,所以我们面向移动终端的WebAPP也开始跟进了.本文主要介绍webapp的开发与调试的相关知识和经验,以及给出几种可选的解决 ...

  2. 回顾Ado.Net

    using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Da ...

  3. Oralce11 客户端的安装和 PlSql Developer 的配置

    关于Oracle11服务器端安装时的配置问题我就不讲了,就是要安装DataBase1和DataBase2. 现在我来讲的是Oralce11 客户端的安装和PlSql的配置问题: 步骤一:选择图示,wi ...

  4. zoj 3777

    状态压缩dp #include<cstdio> #include<cstring> #include<algorithm> #define maxn 4100 us ...

  5. C/C++中几种经典的垃圾回收算法

    1.引用计数算法 引用计数(Reference Counting)算法是每个对象计算指向它的指针的数量,当有一个指针指向自己时计数值加1:当删除一个指向自己的指针时,计数值减1,如果计数值减为0,说明 ...

  6. Emoji表情符号兼容方案(适用ios,android,wp等平台)

    http://blog.csdn.net/qdkfriend/article/details/7576524 Emoji表情符号兼容方案 一 什么是Emoji emoji就是表情符号:词义来自日语(え ...

  7. 查看使用的Eclipse版本

    第一种方法 1. 找到Eclipse的解压目录就是你的Eclipse.exe 所在的目录 2. 找到 .eclipseproduct 文件双击打开

  8. c++ 孟岩推荐 书籍

    c++ primer 中文版本  是 教程+参考书 扛梁之作c++ 标准程序库 对于c++熟手来说更为快捷effective c++  永远是初学者必读的,但是c++11标准后的第四版,还未发布c++ ...

  9. [itint5]环形最大连续子段和

    http://www.itint5.com/oj/#9 一开始有了个n*n的算法,就是把原来的数组*2,由环形的展开成数组.然后调用n次最大子段和的方法.超时. 后来看到个O(n)的算法,就是如果不跨 ...

  10. $.cookie 使用不了的问题定位过程

    最近在项目中需要使用到jquery的cookie,按理说在html头中引入jquery-1.7.1.min.js和jquery.cookie.js,然后在js中就可以使用cookie函数了.像这样使用 ...