[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographically ordered basis on the space of tensors, the matrix for $A\otimes B$ can be written in block form as follows: if $A=(a_{ij})$, then $$\bex A\otimes B=\sex{\ba{ccc} a_{11}B&\cdots&a_{1n}B\\ \vdots&\ddots&\vdots\\ a_{n1}B&\cdots&a_{nn}B \ea}. \eex$$
Solution. Let $A\in \scrL(\scrH)$, $B\in \scrL(\scrK)$, and $e_1,\cdots,e_n$; $f_1,\cdots,f_m$ be the orthonormal basis of $\scrH$ and $\scrK$ respectively. Then $$\beex \bea (A\otimes B)(e_i\otimes f_j) &=(Ae_i)\otimes (Bf_j)\\ &=\sum_k a_{ki}e_k\otimes \sum_l b_{lj}f_l\\ &=\sum_{k,l}a_{ki}b_{lj}e_k\otimes f_l\\ &=\sex{e_1\otimes f_1,\cdots,e_1\otimes f_n,\cdots,e_n\otimes f_n}\sex{\ba{c} a_{1i}b_{1j}\\ \vdots\\ a_{1i}b_{nj}\\ \vdots\\ a_{ni}b_{nj} \ea}. \eea \eeex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- EXTJS 4.2 资料 控件之Window窗体相关属性的用法
最大化,最小化,是否显示关闭按钮 var win_CommonPicLibMultiple = Ext.create("Ext.window.Window", { title: & ...
- 【BZOJ 1022】 [SHOI2008]小约翰的游戏John
Description 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取 ...
- 微软职位内部推荐-Principal Dev Manager for Windows Phone Apps
微软近期Open的职位: Location: China, BeijingDivision: Operations System Group Engineering Group OverviewOSG ...
- Elasticsearch搜索类型(query type)详解
关于我,邯郸人. 对这类话题感兴趣?欢迎发送邮件至donlianli@126.com 请支持原创http://www.cnblogs.com/donlianli/p/3857500.html e ...
- 1201: [HNOI2005]数三角形 - BZOJ
Description Input 大三角形的所有短边可以看成由(n+1)*n/2个单位三角形的边界组成.如下图的灰色三角形所示.其中第1排有1个灰色三角形,第2排有2个灰色三角形,……,第n排有n个 ...
- iOS 屏幕旋转 nav+tabbar+present(网页) 2016
如题,最近一个app架构为 nav + tabbar ,需求是 在点击tabbar中的一个菜单项时,弹出网页,该网页需要横屏显示,其他页面不变 都保持竖屏. XCode Version 7.2.1 ...
- eclipse中切换jre后报错:Java compiler level does not match the version of the installed Java project facet.
项目移除原来的jre环境lib后,添加本地的jre,报错如下: Java compiler level does not match the version of the installed Java ...
- minicom 配置
问题: 1:不相应按键,只有打印 Hardware Flow Control 选择NO minicom显示中文的设置: env LANG=en_US minicom 可以 ...
- 使用QGridLayout布局实现翻页效果
http://blog.csdn.net/u013704336/article/details/51474942
- 拒绝卡顿——在WPF中使用多线程更新UI
原文:拒绝卡顿--在WPF中使用多线程更新UI 有经验的程序员们都知道:不能在UI线程上进行耗时操作,那样会造成界面卡顿,如下就是一个简单的示例: public partial class MainW ...