Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographically ordered basis on the space of tensors, the matrix for $A\otimes B$ can be written in block form as follows: if $A=(a_{ij})$, then $$\bex A\otimes B=\sex{\ba{ccc} a_{11}B&\cdots&a_{1n}B\\ \vdots&\ddots&\vdots\\ a_{n1}B&\cdots&a_{nn}B \ea}. \eex$$

Solution. Let $A\in \scrL(\scrH)$, $B\in \scrL(\scrK)$, and $e_1,\cdots,e_n$; $f_1,\cdots,f_m$ be the orthonormal basis of $\scrH$ and $\scrK$ respectively. Then $$\beex \bea (A\otimes B)(e_i\otimes f_j) &=(Ae_i)\otimes (Bf_j)\\ &=\sum_k a_{ki}e_k\otimes \sum_l b_{lj}f_l\\ &=\sum_{k,l}a_{ki}b_{lj}e_k\otimes f_l\\ &=\sex{e_1\otimes f_1,\cdots,e_1\otimes f_n,\cdots,e_n\otimes f_n}\sex{\ba{c} a_{1i}b_{1j}\\ \vdots\\ a_{1i}b_{nj}\\ \vdots\\ a_{ni}b_{nj} \ea}. \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 【MyBatis】 通过包含的jdbcType类型

    BIT         FLOAT      CHAR           TIMESTAMP       OTHER       UNDEFINED TINYINT     REAL       V ...

  2. GIS业务逻辑

    三维怎么加载数据文件? OpenFileDialog frm = new OpenFileDialog(); frm.Filter = "文件数据集|*.tile|多时相数据集|*.Temp ...

  3. EXTJS 4.2 资料 控件之tabpanel 静态生成tabpanel

    //**************页面主体开始***************** var tabpanel = Ext.createWidget('tabpanel', { activeTab: 0, ...

  4. how to get sharepoint lookup value

    SPFieldLookup lookUp1 = properties.ListItem.ParentList.Fields.GetField("Leave_x0020_Type") ...

  5. 如何通过logcat查看系统程序的意图

    如果在logcat中不能看到系统程序启动时的意图的类名, 以打开图库(gallery)为例,可以通过在ddms中如图设置,就可以在tomcat中查看到gallery启动时的意图.

  6. 1046: [HAOI2007]上升序列 - BZOJ

    Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ...

  7. sqlmap动态sql优化,避免传参失误批量修改和删除操作!

    分析以下的sqlmap存在问题: <delete id="deletePartspic" parameterClass="TblSpPartspic"&g ...

  8. 【BZOJ 1046】 1046: [HAOI2007]上升序列

    1046: [HAOI2007]上升序列 Description 对于一个给定的S={a1,a2,a3,-,an},若有P={ax1,ax2,ax3,-,axm},满足(x1 < x2 < ...

  9. C语言 结构体的内存对齐问题与位域

    http://blog.csdn.net/xing_hao/article/details/6678048 一.内存对齐 许多计算机系统对基本类型数据在内存中存放的位置有限制,它们会要求这些数据的首地 ...

  10. movzbl和movsbl

    汇编语言中最最常用的指令 -- 数据传送指令,也是我们接触的第一种类别的汇编指令.其指令的格式为:“mov 源操作数, 目的操作数”.mov系列支持从最小一个字节到最大双字的访问与传送.其中movb用 ...