Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographically ordered basis on the space of tensors, the matrix for $A\otimes B$ can be written in block form as follows: if $A=(a_{ij})$, then $$\bex A\otimes B=\sex{\ba{ccc} a_{11}B&\cdots&a_{1n}B\\ \vdots&\ddots&\vdots\\ a_{n1}B&\cdots&a_{nn}B \ea}. \eex$$

Solution. Let $A\in \scrL(\scrH)$, $B\in \scrL(\scrK)$, and $e_1,\cdots,e_n$; $f_1,\cdots,f_m$ be the orthonormal basis of $\scrH$ and $\scrK$ respectively. Then $$\beex \bea (A\otimes B)(e_i\otimes f_j) &=(Ae_i)\otimes (Bf_j)\\ &=\sum_k a_{ki}e_k\otimes \sum_l b_{lj}f_l\\ &=\sum_{k,l}a_{ki}b_{lj}e_k\otimes f_l\\ &=\sex{e_1\otimes f_1,\cdots,e_1\otimes f_n,\cdots,e_n\otimes f_n}\sex{\ba{c} a_{1i}b_{1j}\\ \vdots\\ a_{1i}b_{nj}\\ \vdots\\ a_{ni}b_{nj} \ea}. \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. filter_map

    #!/usr/bin/env python # -*- coding:utf-8 -*- ret = filter( lambda x: x < 3, [1, 2, 3, 4, 5]) prin ...

  2. Asp.Net MVC结合ExtJs gridPanel 分页和高度自适应

    Ext.onReady(function () { gridPanel(); var panel = Ext.getCmp('gridPanel'); window.onresize = functi ...

  3. bnuoj 1057 函数(模拟)

    http://www.bnuoj.com/bnuoj/problem_show.php?pid=1057 [题意]:给定x的值,带入f(x)求函数值 [题解]:注意第一个数的符号可能是'+',这里把我 ...

  4. 1.2 XmlBeanFactory的实例化

    源代码分析,是一件既痛苦又快乐的事情,看别人写的代码是通过的,但当你能够看明白的时候,相信快乐也会随之而来,为了减少痛苦,更快的带来快乐, 本文以spring框架的XmlBeanFactory为入手点 ...

  5. 解决Maven不能下载“oracle、aspectjweaver、com.springsource.net.sf.cglib”jar

    鸣谢网址:http://www.cnblogs.com/dongyangbolg/p/3455422.html http://www.cnblogs.com/ysq0908/p/4737977.htm ...

  6. 站长、运维必备| 网站可用性监控产品 OneAPM Cloud Test 上线

    白天太忙,到了晚上才发现网站一天都没有访问量? 直到有用户投诉才发现网站完全无法访问? 还要每月付费才能及时了解网站可用情况? 监控频率太低,不能及时发现网站不可用? 第三方服务宕机,导致您的网站不可 ...

  7. HDU 1158 Employment Planning (DP)

    题目链接 题意 : n个月,每个月都至少需要mon[i]个人来工作,然后每次雇佣工人需要给一部分钱,每个人每个月还要给工资,如果解雇人还需要给一笔钱,所以问你主管应该怎么雇佣或解雇工人才能使总花销最小 ...

  8. SDUT 2523 OOXX

    http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2523 思路 :就是先统计一下方阵中1多少2多少 ...

  9. [杂题]FZU2190 非提的救赎

    中文题,题意不多说. 本来感觉很像dp 其实只要从上到下维护单调性就好了 坑是......这个oj......用cin很容易TLE...... //#include <bits/stdc++.h ...

  10. 分布式事务的管理--atomikos

    在一些业务场景及技术架构下,跨库的事务时不可避免的,这时候如何统一管理事务,保证事务的强一致性是整个系统稳定.可用基石.一些中间件如tuxedo.cics就是凭借这个能力占据了金融.电信.银行等很大的 ...