Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographically ordered basis on the space of tensors, the matrix for $A\otimes B$ can be written in block form as follows: if $A=(a_{ij})$, then $$\bex A\otimes B=\sex{\ba{ccc} a_{11}B&\cdots&a_{1n}B\\ \vdots&\ddots&\vdots\\ a_{n1}B&\cdots&a_{nn}B \ea}. \eex$$

Solution. Let $A\in \scrL(\scrH)$, $B\in \scrL(\scrK)$, and $e_1,\cdots,e_n$; $f_1,\cdots,f_m$ be the orthonormal basis of $\scrH$ and $\scrK$ respectively. Then $$\beex \bea (A\otimes B)(e_i\otimes f_j) &=(Ae_i)\otimes (Bf_j)\\ &=\sum_k a_{ki}e_k\otimes \sum_l b_{lj}f_l\\ &=\sum_{k,l}a_{ki}b_{lj}e_k\otimes f_l\\ &=\sex{e_1\otimes f_1,\cdots,e_1\otimes f_n,\cdots,e_n\otimes f_n}\sex{\ba{c} a_{1i}b_{1j}\\ \vdots\\ a_{1i}b_{nj}\\ \vdots\\ a_{ni}b_{nj} \ea}. \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. mysql慢查询优化之explain的各列含义

    mysql> explain select customer_id,first_name,last_name from customer; +----+-------------+------- ...

  2. iOS10 权限崩溃问题-b

    手机升级了 iOS10 Beta,然后用正在开发的项目 装了个ipa包,发现点击有关 权限访问 直接Crash了,并在控制台输出了一些信息: This app has crashed because ...

  3. NSString常用方法

    --实例化方法-------------- NSString *str = [[NSString alloc] init]; NSString *str = [[[NSString alloc] in ...

  4. 记一次apt-get无法安装git的问题

    解决apt-get安装过程中出现的Size mismatch和Hash Sum mismatch问题. 事情起因 我从单位复制了一个Virtualbox虚拟机(ubuntu 15.04 Desktop ...

  5. 如何使用 XSD

    如何使用 XSD 一个简单的 XML 文档: 请看这个名为 "note.xml" 的 XML 文档: <?xml version="1.0"?> & ...

  6. BZOJ 1593: [Usaco2008 Feb]Hotel 旅馆

    Description 奶牛们最近的旅游计划,是到苏必利尔湖畔,享受那里的湖光山色,以及明媚的阳光.作为整个旅游的策划者和负责人,贝茜选择在湖边的一家著名的旅馆住宿.这个巨大的旅馆一共有N (1 &l ...

  7. Kafka 之 async producer (2) kafka.producer.async.DefaultEventHandler

    上次留下来的问题 如果消息是发给很多不同的topic的, async producer如何在按batch发送的同时区分topic的 它是如何用key来做partition的? 是如何实现对消息成批量的 ...

  8. jmeter 一个可能引起性能严重下降的断言设置

    在添加断言时一定要注意: 1. 红框部分选择 "响应文本", 2.  要断言的内容越短越好

  9. c缺陷与陷阱笔记-第一章 词法陷阱

    1.运算符的贪心性,匹配最长的运算符,例如 n-->0,从-开始,-是运算符,--是运算符,-->就不是,所以是 n -- > 0,--是 a---b,-是,--是,,---不是,所 ...

  10. Django处理文件上传File Uploads

    HttpRequest.FILES 表单上传的文件对象存储在类字典对象request.FILES中,表单格式需为multipart/form-data <form enctype="m ...