It's All In The Mind

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=5742

Description

Professor Zhang has a number sequence a1,a2,...,an. However, the sequence is not complete and some elements are missing. Fortunately, Professor Zhang remembers some properties of the sequence:

  1. For every i∈{1,2,...,n}, 0≤ai≤100.
  2. The sequence is non-increasing, i.e. a1≥a2≥...≥an.
  3. The sum of all elements in the sequence is not zero.

Professor Zhang wants to know the maximum value of a1+a2∑ni=1ai among all the possible sequences.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first contains two integers n and m (2≤n≤100,0≤m≤n) -- the length of the sequence and the number of known elements.

In the next m lines, each contains two integers xi and yi (1≤xi≤n,0≤yi≤100,xi<xi+1,yi≥yi+1), indicating that axi=yi.

Output

For each test case, output the answer as an irreducible fraction "p/q", where p, q are integers, q>0.

Sample Input

2

2 0

3 1

3 1

Sample Output

1/1

200/201

Source

2016 Multi-University Training Contest 2

##题意:

对于一个数组a1 - an,部分元素已知,部分未知.
数组满足性质:0≤ai≤100, 非严格递减, 所有数之和非0.
求所有满足情况的数组中,a1+a2/sum(ai) 的最大值.


##题解:

贪心的想法:
a1和a2应该尽量大; 其余数尽量小.
WA点:a1已知但a2未知,注意不要把a2直接赋成100;
WA了一个下午....弱的不行


##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define double LL
#define eps 1e-8
#define maxn 150
#define mod 1000000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;

int n,m;

int num[maxn];

int gcd(int a, int b) {

return b==0? a:gcd(b,a%b);

}

int main(void)

{

//IN;

int t; cin >> t;
while(t--)
{
memset(num, -1, sizeof(num));
cin >> n >> m;
for(int i=1; i<=m; i++) {
int x,y; scanf("%d %d", &x,&y);
num[x] = y;
} int mimi = 0;
for(int i=n; i>=3; i--) {
if(num[i] == -1) {
num[i] = mimi;
} else {
mimi = num[i];
}
} if(num[1] == -1) num[1] = 100;
if(num[2] == -1) num[2] = min(100, num[1]); int sum1 = num[1] + num[2];
int sum2 = sum1;
for(int i=3; i<=n; i++) sum2 += num[i];
if(sum2 == 0) sum2 = 1; int gcds = gcd(sum1, sum2);
printf("%d/%d\n", sum1/gcds, sum2/gcds);
} return 0;

}

HDU 5742 It's All In The Mind (贪心)的更多相关文章

  1. HDU 5742 It's All In The Mind (贪心) 2016杭电多校联合第二场

    题目:传送门. 题意:求题目中的公式的最大值,且满足题目中的三个条件. 题解:前两个数越大越好. #include <iostream> #include <algorithm> ...

  2. hdu 5742 It's All In The Mind 水题

    It's All In The Mind 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5742 Description Professor Zhan ...

  3. HDU 5742 Chess SG函数博弈

    Chess Problem Description   Alice and Bob are playing a special chess game on an n × 20 chessboard. ...

  4. HDU 5742 It's All In The Mind

    It's All In The Mind Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  5. hdu 5742 It's All In The Mind(2016多校第二场)

    It's All In The Mind Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  6. HDU 5055 Bob and math problem(简单贪心)

    http://acm.hdu.edu.cn/showproblem.php?pid=5055 题目大意: 给你N位数,每位数是0~9之间.你把这N位数构成一个整数. 要求: 1.必须是奇数 2.整数的 ...

  7. HDU 1052 Tian Ji -- The Horse Racing(贪心)(2004 Asia Regional Shanghai)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1052 Problem Description Here is a famous story in Ch ...

  8. HDU 1053 Entropy(哈夫曼编码 贪心+优先队列)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1053 Entropy Time Limit: 2000/1000 MS (Java/Others)   ...

  9. HDU 1052 Tian Ji -- The Horse Racing (贪心)(转载有修改)

    Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

随机推荐

  1. oracle lsnrctl status|start|stop

    [oracle@redhat4 ~]$ lsnrctl status LSNRCTL for Linux: Version 11.2.0.1.0 - Production on 06-OCT-2015 ...

  2. Oracle Gateways透明网关访问SQL Server

    自己的本机安装了Oracle 12c,公司的平台需要同时支持Oracle与SQL Server,很多时候都有将数据从Oracle同步到SQL Server的需求.通过SQL Server的link S ...

  3. 查看Linux服务器网络状态

    ifconfig 用来显示所有网络接口的详细情况的,如:ip地址,子网掩码等. ethx是以太网网卡的名称. 配置文件在/etc/sysconfig/network-scripts/ifcfg-eth ...

  4. Python模块整理(三):子进程模块subprocess

    文章 原始出处 http://ipseek.blog.51cto.com/1041109/807513. 本来收集整理网络上相关资料后整理: 从python2.4版本开始,可以用subprocess这 ...

  5. android上的缓存、缓存算法和缓存框架

      1.使用缓存的目的 缓存是存取数据的临时地,因为取原始数据代价太大了,加了缓存,可以取得快些.缓存可以认为是原始数据的子集,它是从原始数据里复制出来的,并且为了能被取回,被加上了标志. 在andr ...

  6. sql Server 的基本函数

    --聚合函数 use pubs go select avg(distinct搜索 price) --算平均数 from titles where type='business' go use pubs ...

  7. UVa 540 Team Queue 【STL】

    题意:给出t个团体,这t个团体排在一起,每次新来一个x排队,如果在整个的团体队列中,有x的队友,那么x排在它的队友的后面,如果他没有队友,则排在长队的队尾 求给出的每一个出队命令,输出出队的人的编号 ...

  8. Informatica 9.1常用查询

    select a.mapping_name, a.mapping_id, a.subject_id, a.is_valid, b.pv_precision, c.pv_value, b.pv_defa ...

  9. Android-根据ImageView的大小来压缩Bitmap,避免OOM

    本文转自:http://www.cnblogs.com/tianzhijiexian/p/4254110.html Bitmap是引起OOM的罪魁祸首之一,当我们从网络上下载图片的时候无法知道网络图片 ...

  10. MyBatis学习 之 二、SQL语句映射文件(2)增删改查、参数、缓存

    目录(?)[-] 二SQL语句映射文件2增删改查参数缓存 select insert updatedelete sql parameters 基本类型参数 Java实体类型参数 Map参数 多参数的实 ...