It's All In The Mind

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=5742

Description

Professor Zhang has a number sequence a1,a2,...,an. However, the sequence is not complete and some elements are missing. Fortunately, Professor Zhang remembers some properties of the sequence:

  1. For every i∈{1,2,...,n}, 0≤ai≤100.
  2. The sequence is non-increasing, i.e. a1≥a2≥...≥an.
  3. The sum of all elements in the sequence is not zero.

Professor Zhang wants to know the maximum value of a1+a2∑ni=1ai among all the possible sequences.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first contains two integers n and m (2≤n≤100,0≤m≤n) -- the length of the sequence and the number of known elements.

In the next m lines, each contains two integers xi and yi (1≤xi≤n,0≤yi≤100,xi<xi+1,yi≥yi+1), indicating that axi=yi.

Output

For each test case, output the answer as an irreducible fraction "p/q", where p, q are integers, q>0.

Sample Input

2

2 0

3 1

3 1

Sample Output

1/1

200/201

Source

2016 Multi-University Training Contest 2

##题意:

对于一个数组a1 - an,部分元素已知,部分未知.
数组满足性质:0≤ai≤100, 非严格递减, 所有数之和非0.
求所有满足情况的数组中,a1+a2/sum(ai) 的最大值.


##题解:

贪心的想法:
a1和a2应该尽量大; 其余数尽量小.
WA点:a1已知但a2未知,注意不要把a2直接赋成100;
WA了一个下午....弱的不行


##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define double LL
#define eps 1e-8
#define maxn 150
#define mod 1000000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;

int n,m;

int num[maxn];

int gcd(int a, int b) {

return b==0? a:gcd(b,a%b);

}

int main(void)

{

//IN;

int t; cin >> t;
while(t--)
{
memset(num, -1, sizeof(num));
cin >> n >> m;
for(int i=1; i<=m; i++) {
int x,y; scanf("%d %d", &x,&y);
num[x] = y;
} int mimi = 0;
for(int i=n; i>=3; i--) {
if(num[i] == -1) {
num[i] = mimi;
} else {
mimi = num[i];
}
} if(num[1] == -1) num[1] = 100;
if(num[2] == -1) num[2] = min(100, num[1]); int sum1 = num[1] + num[2];
int sum2 = sum1;
for(int i=3; i<=n; i++) sum2 += num[i];
if(sum2 == 0) sum2 = 1; int gcds = gcd(sum1, sum2);
printf("%d/%d\n", sum1/gcds, sum2/gcds);
} return 0;

}

HDU 5742 It's All In The Mind (贪心)的更多相关文章

  1. HDU 5742 It's All In The Mind (贪心) 2016杭电多校联合第二场

    题目:传送门. 题意:求题目中的公式的最大值,且满足题目中的三个条件. 题解:前两个数越大越好. #include <iostream> #include <algorithm> ...

  2. hdu 5742 It's All In The Mind 水题

    It's All In The Mind 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5742 Description Professor Zhan ...

  3. HDU 5742 Chess SG函数博弈

    Chess Problem Description   Alice and Bob are playing a special chess game on an n × 20 chessboard. ...

  4. HDU 5742 It's All In The Mind

    It's All In The Mind Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  5. hdu 5742 It's All In The Mind(2016多校第二场)

    It's All In The Mind Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  6. HDU 5055 Bob and math problem(简单贪心)

    http://acm.hdu.edu.cn/showproblem.php?pid=5055 题目大意: 给你N位数,每位数是0~9之间.你把这N位数构成一个整数. 要求: 1.必须是奇数 2.整数的 ...

  7. HDU 1052 Tian Ji -- The Horse Racing(贪心)(2004 Asia Regional Shanghai)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1052 Problem Description Here is a famous story in Ch ...

  8. HDU 1053 Entropy(哈夫曼编码 贪心+优先队列)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1053 Entropy Time Limit: 2000/1000 MS (Java/Others)   ...

  9. HDU 1052 Tian Ji -- The Horse Racing (贪心)(转载有修改)

    Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

随机推荐

  1. UVA 11916 Emoogle Grid(同余模)

    题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  2. java.lang.NoSuchMethodError: No static method setLayoutDirection(Landroid/graphics/drawable/Drawable;I)V in class Landroid/support/v4/graphics/drawable/DrawableCompat

    Bug: java.lang.NoSuchMethodError: No static method setLayoutDirection(Landroid/graphics/drawable/Dra ...

  3. [UVA796]Critical Links(割边, 桥)

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  4. 网站常见问题及解决方法(div/css)

    18.<a> 在IE6,7 下面重新定义宽和高的代码:{  display:block; display:-moz-inline-stack; display:inline-block;  ...

  5. UVa 10969 (圆与圆之间的覆盖问题) Sweet Dream

    题意: 有n个按先后顺序放置的不同大小不同位置的圆,求所有可见圆弧的长度. 分析: 这道题应该是大白书上例题 LA 2572 (求可见圆盘的数量) Kanazawa 的加强版,整体框架都差不多. 对于 ...

  6. Java [Leetcode 238]Product of Array Except Self

    题目描述: Given an array of n integers where n > 1, nums, return an array output such that output[i]  ...

  7. Java [Leetcode 110]Balanced Binary Tree

    题目描述: Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced b ...

  8. 【原创】回溯线搜索 Backtracking line search

    机器学习中很多数值优化算法都会用到线搜索(line search).线搜索的目的是在搜索方向上找到是目标函数\(f(x)\)最小的点.然而,精确找到最小点比较耗时,由于搜索方向本来就是近似,所以用较小 ...

  9. ASP.NET MVC模型部分验证

    在很多情况下,我们为了代码的复用可能会存在ViewModel共用的情形.比方说,web应用中常常会遇到的一个需求就是用户找回密码的功能.用户首先要验证通过验证邮箱(通常是用户名)来获取验证码,然后再进 ...

  10. hdu 1211 RSA

    // 表示题目意思我是理解了蛮久 英语太水了 //首先这是解密公式 m=c^d mod n// 给你 p q e 然后 n=p*q fn=(p-1)*(q-1)// 给你 e,根据公式 e*d mod ...