洛谷P2762 太空飞行计划问题(最小割)
我们可以把实验放在左边,仪器放在右边,点有点权,然后连对应的有向边,就是求一个最大权闭合图,可以转化为最小割来做(关于这具体是个啥……可以百度胡伯涛《最小割模型在信息学竞赛中的应用》)
总而言之,就是求一个图,每一个点有点权,闭合图就是若图中有点$u$,且原图中存在边$(u,v)$,那么点$v$也在图中。然后求一个最大权的闭合图即可(具体证明看上面)。最大权闭合图可以转化成下面那样建图之后求最小割
源点向所有实验连边,容量为收益,实验向对应仪器连边,容量为$inf$,仪器向汇点连边,容量为花费,求一个最小割就好了,然后答案就是收益总和减去最小割
然后考虑怎么求方案,因为最后一次bfs没有增广成功,而与源点想通的点就是闭合图中的点,所以只要最后一次分层图中$dep$不等于$-1$的点即可
//minamoto
#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
#define inf 0x3f3f3f3f
using namespace std;
inline bool read(int &res){
res=;char ch=getchar();
while(!isdigit(ch)){if(ch=='\n') return false;ch=getchar();}
while(isdigit(ch)){res=res*+ch-'',ch=getchar();}
return ch!='\n';
}
const int N=,M=;
int ver[M],Next[M],head[N],edge[M],cur[N],tot=;
int dep[N],n,m,s,t,ans;
queue<int> q;
inline void add(int u,int v,int e){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot,edge[tot]=e;
ver[++tot]=u,Next[tot]=head[v],head[v]=tot,edge[tot]=;
}
bool bfs(){
memset(dep,-,sizeof(dep));
for(int i=;i<=n+m+;++i) cur[i]=head[i];
q.push(s),dep[s]=;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(dep[v]<&&edge[i])
dep[v]=dep[u]+,q.push(v);
}
}
return ~dep[t];
}
int dfs(int u,int limit){
if(!limit||u==t) return limit;
int flow=,f;
for(int i=cur[u];i;i=Next[i]){
int v=ver[i];cur[u]=i;
if(dep[v]==dep[u]+&&(f=dfs(v,min(limit,edge[i])))){
flow+=f,limit-=f;
edge[i]-=f,edge[i^]+=f;
if(!limit) break;
}
}
return flow;
}
int dinic(){
int flow=;
while(bfs()) flow+=dfs(s,inf);
return flow;
}
int main(){
scanf("%d%d",&m,&n);
s=,t=n+m+;
for(int i=,x;i<=m;++i){
scanf("%d",&x),ans+=x;
add(s,i,x);
while(read(x)) add(i,x+m,inf);
add(i,x+m,inf);
}
for(int i=m+,x;i<=n+m;++i){
scanf("%d",&x);
add(i,t,x);
}
ans-=dinic();
for(int i=;i<=m;++i)
if(~dep[i]) printf("%d ",i);
putchar();
for(int i=m+;i<=n+m;++i)
if(~dep[i]) printf("%d ",i-m);
putchar();
printf("%d\n",ans);
return ;
}
洛谷P2762 太空飞行计划问题(最小割)的更多相关文章
- 洛谷 - P2762 - 太空飞行计划问题 - 最小割
https://www.luogu.org/problemnew/solution/P2762 最小割对应的点,在最后一次更新中dinic的bfs会把他的dep重置掉.所以可以根据这个性质复原最小割. ...
- 洛谷 P2762 太空飞行计划问题 P3410 拍照【最大权闭合子图】题解+代码
洛谷 P2762 太空飞行计划问题 P3410 拍照[最大权闭合子图]题解+代码 最大权闭合子图 定义: 如果对于一个点集合,其中任何一个点都不能到达此集合以外的点,这就叫做闭合子图.每个点都有一个权 ...
- 洛谷 P4174 [NOI2006]最大获利 && 洛谷 P2762 太空飞行计划问题 (最大权闭合子图 && 最小割输出任意一组方案)
https://www.luogu.org/problemnew/show/P4174 最大权闭合子图的模板 每个通讯站建一个点,点权为-Pi:每个用户建一个点,点权为Ci,分别向Ai和Bi对应的点连 ...
- 洛谷 [P2762] 太空飞行计划问题
最大权闭合子图 胡伯涛论文真是个好东西.jpg 求一个有向图的最大权闭合子图,常应用于有先决条件的最优化问题中 将所有正权点与源点相连,容量为点权; 将所有负权点与汇点相连,容量为点权的相反数; 将原 ...
- 洛谷P2762 太空飞行计划问题
这题套路好深......没想渠. 题意:给你若干个设备,若干个任务. 每个任务需要若干设备,设备可重复利用. 完成任务有钱,买设备要钱. 问最大总收益(可以什么任务都不做). 解:最大权闭合子图. 对 ...
- 洛谷P2762 太空飞行计划问题(最大权闭合图)
题意 有$m$个实验,$n$中器材,每个实验需要使用一些器材 每个实验有收入,每个器材有花费 最大化收入 - 花费 Sol 最大权闭合图的经典应用 从$S$向每个实验连流量为该实验收入的边 从每个器材 ...
- P2762 太空飞行计划问题 (最小割)
题意:n个实验 每个实验可获利ai元 做每个实验需要几个仪器 购买每个仪器有不同的花费 不同实验可能会用到同一个仪器 只用购买一次 求最大收益 题解:......................... ...
- 洛谷 P2762 太空飞行计划问题 【最大权闭合子图+最小割】
--一道难在读入的题. 最后解决方案直接getline一行然后是把读优拆掉放进函数,虽然很丑但是过了. 然后就是裸的最大权闭合子图了,把仪器当成负权点向t连流量为其价格的边,s向实验连流量为实验报酬的 ...
- P2762 [网络流24题]太空飞行计划问题(最小割)
地址 最大权闭合子图裸题,不说了吧,求方案就是把s集遍历一遍. 错误记录:dfs那块忘判断残量了,11分×1. #include<cstdio> #include<iostream& ...
随机推荐
- Centos7 SSH公钥生成及配置
1.你可以按如下命令来生成 sshkey: ssh-keygen -t rsa -C "xxxxx@xxxxx.com" 2.按照提示完成三次回车,即可生成 ssh key.通过查 ...
- C#中用SerialPort类中的Write()方法发送十六进制数
在C#中用SerialPort类中的Write()方法向串口发送十六进制数的方法: MSDN对SerialPort::Write()是这样解释的: 将数据写入串行端口输出缓冲区. 重载列表 名称 ...
- c++builder Active Form
新增的属性.方法刷新一下才可以生成方法的实现.保存按钮不生成,刷新就好了. Refresh Implemention
- 【原】Coursera—Andrew Ng机器学习—编程作业 Programming Exercise 3—多分类逻辑回归和神经网络
作业说明 Exercise 3,Week 4,使用Octave实现图片中手写数字 0-9 的识别,采用两种方式(1)多分类逻辑回归(2)多分类神经网络.对比结果. (1)多分类逻辑回归:实现 lrCo ...
- 如何在Less中使用使用calc
文章转载自 琼台博客:http://www.qttc.net/201409448.html Less的好处不用说大家都知道,确实让写CSS的人不在痛苦了,最近我在Less里加入calc时确发现了有点 ...
- POJ1039几何
这道题目要求我们判断光线进入一条管道后可以抵达的最大的x坐标. 这是我做的第一道几何题目,卡了我半天.翻了不少书,才大概明白了些.既然是第一次做,就把所有今天学到的就全部写下好了. 1.如何判断平面上 ...
- Codeforces 919F——A Game With Numbers
转自大佬博客:https://www.cnblogs.com/NaVi-Awson/p/8405966.html; 题意 两个人 Van♂ 游戏,每人手上各有 8'>88 张牌,牌上数字均为 [ ...
- Oracle设置主键自增长
第一步:为表设置主键 第二步:新建序列 CREATE SEQUENCE SQ.SEQ_INCREASE START WITH 12 MAXVALUE 999 MINVALUE 0 INCREME ...
- Python 安装selenium
一.报错信息 No module named 'selenium' 二.系统环境 操作系统:Win10 64位 Python版本:Python 3.7.0 三.安装参考 1.使用pip安装seleni ...
- boost 时间与日期处理
博客转载自: 类 特点 缺点 说明 timer 计时基类 不适合大跨度时间 适用大部分的普通计时 progress_timer 继承自timer 可以自动写入流中 只精确到0.01s 如果需要更精确, ...