【bzoj1096-仓库建设】斜率优化
dsy1096: [ZJOI2007]仓库建设
【问题描述】
L公司有N个工厂,由高到底分布在一座山上。如图所示,工厂1在山顶,工厂N在山脚。
由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。
由于地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci。对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设置在山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,假设一件产品运送1个单位距离的费用是1。假设建立的仓库容量都都是足够大的,可以容下所有的产品。
你将得到以下数据:
l 工厂i距离工厂1的距离Xi(其中X1=0);
l 工厂i目前已有成品数量Pi;
l 在工厂i建立仓库的费用Ci;
请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。
【输入文件】
输入文件storage.in第一行包含一个整数N,表示工厂的个数。接下来N行每行包含两个整数Xi, Pi, Ci, 意义如题中所述。
【输出文件】
输出文件storage.out仅包含一个整数,为可以找到最优方案的费用。
【样例输入】
3
0 5 10
5 3 100
9 6 10
【样例输出】
32
【样例说明】
在工厂1和工厂3建立仓库,建立费用为10+10=20,运输费用为(9-5)*3 = 12,总费用32。
如果仅在工厂3建立仓库,建立费用为10,运输费用为(9-0)*5+(9-5)*3=57,总费用67,不如前者优。
【数据规模】
对于20%的数据, N ≤500;
对于40%的数据, N ≤10000;
对于100%的数据, N ≤1000000。
所有的Xi, Pi, Ci均在32位bzoj1带符号整数以内,保证中间计算结果不超过64位带符号整数。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std; typedef long long LL;
const LL N=;
LL n,dis[N],w[N],c[N],s[N],t[N],f[N],Q[N]; // f[i]=a[i]*x[j]+b[j]
// a[i]=-dis[i]
// x[j]=S[j]
// b[j]=f[j]+T[j]
// t[i]=dis[i]*s[i]+c[i]-T[i] double X(LL i){return s[i];}
double Y(LL i){return f[i]+t[i];}
double find_k(LL i,LL j){return (Y(i)-Y(j))/(X(i)-X(j));} int main()
{
freopen("a.in","r",stdin);
// freopen("storage.in","r",stdin);
// freopen("storage.out","w",stdout);
scanf("%lld",&n);
for(int i=;i<=n;i++) scanf("%lld%lld%lld",&dis[i],&w[i],&c[i]);
s[]=;t[]=;
for(LL i=;i<=n;i++)
{
s[i]=s[i-]+w[i];
t[i]=t[i-]+dis[i]*w[i];
}
f[]=;Q[]=;
LL ai,xj,bj,ti,j,l=,r=;
for(int i=;i<=n;i++)
{
ai=-dis[i];
while(l<r && find_k(Q[l],Q[l+])<=(-ai)) l++;
j=Q[l];
xj=s[j];
bj=f[j]+t[j];
ti=dis[i]*s[i]+c[i]-t[i];
f[i]=ai*xj+bj+ti;
while(l<r && find_k(Q[r-],Q[r])>find_k(Q[r],i)) r--;
Q[++r]=i;
// printf("ti %d = %d\n",i,ti);
// printf("f %d = %d\n",i,f[i]);
}
printf("%lld\n",f[n]);
return ;
}
【bzoj1096-仓库建设】斜率优化的更多相关文章
- 【BZOJ1096】[ZJOI2007]仓库建设 斜率优化
[BZOJ1096][ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司 ...
- bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)
题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...
- 【BZOJ-1096】仓库建设 斜率优化DP
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3719 Solved: 1633[Submit][Stat ...
- 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp
题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...
- [BZOJ1096] [ZJOI2007] 仓库建设 (斜率优化)
Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天, ...
- bzoj1096[ZJOI2007]仓库建设 斜率优化dp
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 5482 Solved: 2448[Submit][Stat ...
- BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4201 Solved: 1851[Submit][Stat ...
- bzoj 1096 仓库建设 -斜率优化
L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气 ...
- P2120 [ZJOI2007]仓库建设 斜率优化dp
好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...
- 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP
做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...
随机推荐
- Encrypted bootloader (程序BIN文件加密及在线升级)
了解更多关于bootloader 的C语言实现,请加我QQ: 1273623966 (验证信息请填 bootloader),欢迎咨询或定制bootloader(在线升级程序). 在上一个博客随笔,我介 ...
- 3招搞定APP注册作弊
在说如何应对之前,易盾先给各位盾友梳理移动端APP可能遇到哪些作弊风险.1. 渠道商刷量,伪造大量的下载量和装机量,但没有新用户注册:2. 对于电商.P2P.外卖等平台,会面临散户或者团队刷子的注册- ...
- 数据库学习(二) case when then else end 的使用
case函数还用来统计数据的,参考资料:https://www.cnblogs.com/qlqwjy/p/7476533.html 这里我只是整理下工作中使用的到案例: 查询语句: SELECT t. ...
- spring boot接口 支持https
1.拥有证书,可自己生成测试用javatool生成 keytool -keystore [keyname].jks -genkey -alias tomcat -keyalg RSA 接下来输入相关信 ...
- Git的使用和部署
Git是什么? Git是目前世界上最先进的分布式版本控制系统(没有之一). 什么是版本控制系统? 没有版本控制系统 有了版本控制系统 版本 文件名 用户 说明 日期 1 service.doc 张三 ...
- java设计模式之命令模式以及在java中作用
命令模式属于对象的行为模式.命令模式又称为行动(Action)模式或交易(Transaction)模式. 命令模式把一个请求或者操作封装到一个对象中.命令模式允许系统使用不同的请求把客户端参数化,对请 ...
- spring mvc:实现给Controller函数传入list<pojo>参数
[1]前端js调用示例: ...insertStatisData?statisDatas=[{'cid':'2','devId':'9003','deviceName':'测试名','endTime' ...
- 修改虚拟机上Linux系统的IP地址
然后再输入:ifconfig eth0 192.168.11.6 netmask 255.255.255.0 . 这样就可以把网卡eth0的IP地址修改为 192.168.11.6
- ArcGis融合小多边形到相邻多边形
在有的时候,我们的数据中可能会有许多细小的图斑,这些并不是我们想要的,需要将它们合并到周围的图斑中,如果一个一个手动合并,那工作量之大简直不敢想象.现在借助ArcGIS的Eliminate工具可 ...
- 安徽师大附中%你赛day9 T2 富 解题报告
富 题目背景 出于某些原因, 苟先生在追杀富先生. 题目描述 富先生所在的地方是一个\(n\times m\)的网格,苟先生排出了他的狼狗大军,共有\(k\)条狗,第\(i\)条狗所在的位置为\((x ...