【bzoj1096-仓库建设】斜率优化
dsy1096: [ZJOI2007]仓库建设
【问题描述】
L公司有N个工厂,由高到底分布在一座山上。如图所示,工厂1在山顶,工厂N在山脚。
由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。
由于地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci。对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设置在山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,假设一件产品运送1个单位距离的费用是1。假设建立的仓库容量都都是足够大的,可以容下所有的产品。
你将得到以下数据:
l 工厂i距离工厂1的距离Xi(其中X1=0);
l 工厂i目前已有成品数量Pi;
l 在工厂i建立仓库的费用Ci;
请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。
【输入文件】
输入文件storage.in第一行包含一个整数N,表示工厂的个数。接下来N行每行包含两个整数Xi, Pi, Ci, 意义如题中所述。
【输出文件】
输出文件storage.out仅包含一个整数,为可以找到最优方案的费用。
【样例输入】
3
0 5 10
5 3 100
9 6 10
【样例输出】
32
【样例说明】
在工厂1和工厂3建立仓库,建立费用为10+10=20,运输费用为(9-5)*3 = 12,总费用32。
如果仅在工厂3建立仓库,建立费用为10,运输费用为(9-0)*5+(9-5)*3=57,总费用67,不如前者优。
【数据规模】
对于20%的数据, N ≤500;
对于40%的数据, N ≤10000;
对于100%的数据, N ≤1000000。
所有的Xi, Pi, Ci均在32位bzoj1带符号整数以内,保证中间计算结果不超过64位带符号整数。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std; typedef long long LL;
const LL N=;
LL n,dis[N],w[N],c[N],s[N],t[N],f[N],Q[N]; // f[i]=a[i]*x[j]+b[j]
// a[i]=-dis[i]
// x[j]=S[j]
// b[j]=f[j]+T[j]
// t[i]=dis[i]*s[i]+c[i]-T[i] double X(LL i){return s[i];}
double Y(LL i){return f[i]+t[i];}
double find_k(LL i,LL j){return (Y(i)-Y(j))/(X(i)-X(j));} int main()
{
freopen("a.in","r",stdin);
// freopen("storage.in","r",stdin);
// freopen("storage.out","w",stdout);
scanf("%lld",&n);
for(int i=;i<=n;i++) scanf("%lld%lld%lld",&dis[i],&w[i],&c[i]);
s[]=;t[]=;
for(LL i=;i<=n;i++)
{
s[i]=s[i-]+w[i];
t[i]=t[i-]+dis[i]*w[i];
}
f[]=;Q[]=;
LL ai,xj,bj,ti,j,l=,r=;
for(int i=;i<=n;i++)
{
ai=-dis[i];
while(l<r && find_k(Q[l],Q[l+])<=(-ai)) l++;
j=Q[l];
xj=s[j];
bj=f[j]+t[j];
ti=dis[i]*s[i]+c[i]-t[i];
f[i]=ai*xj+bj+ti;
while(l<r && find_k(Q[r-],Q[r])>find_k(Q[r],i)) r--;
Q[++r]=i;
// printf("ti %d = %d\n",i,ti);
// printf("f %d = %d\n",i,f[i]);
}
printf("%lld\n",f[n]);
return ;
}
【bzoj1096-仓库建设】斜率优化的更多相关文章
- 【BZOJ1096】[ZJOI2007]仓库建设 斜率优化
[BZOJ1096][ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司 ...
- bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)
题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...
- 【BZOJ-1096】仓库建设 斜率优化DP
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3719 Solved: 1633[Submit][Stat ...
- 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp
题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...
- [BZOJ1096] [ZJOI2007] 仓库建设 (斜率优化)
Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天, ...
- bzoj1096[ZJOI2007]仓库建设 斜率优化dp
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 5482 Solved: 2448[Submit][Stat ...
- BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4201 Solved: 1851[Submit][Stat ...
- bzoj 1096 仓库建设 -斜率优化
L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气 ...
- P2120 [ZJOI2007]仓库建设 斜率优化dp
好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...
- 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP
做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...
随机推荐
- RevealTrans图片切换效果
RevealTrans 更新时间:2013-06-01 17:11:59 | RevealTrans兼容性:IE5.5+ 语法: filter : progid:DXImageTransform.Mi ...
- 正则表达式 Pattern和Matcher
java.util.regex是一个用正则表达式所订制的模式来对字符串进行匹配工作的类库包. 1.简介: java.util.regex是一个用正则表达式所订制的模式来对字符串进行匹配工作的类库包. ...
- 关于ArrayList add()方法 中的引用问题
ArrayList的add方法每次添加一个对象时,添加 的是一个对象的引用,比如进行循环操作10次 lists.add(a) 每次 a会改变 ,这时候你会发现你在lists里添加了10个相同的对象a ...
- pytest 测试报告
测试报告 运行测试用例后,为了保存结果,我们需要生成测试报告,同时可以把运行的测试报告发送相关人员查阅,这时需要安装一个插件(pytest-html) pytest-html插件安装 pip inst ...
- 软件工程项目组Z.XML会议记录 2013/11/06
软件工程项目组Z.XML会议记录 [例会时间]2013年11月06日星期二21:00-22:00 [例会形式]小组讨论 [例会地点]三号公寓楼会客厅 [例会主持]李孟 [会议记录]薛亚杰 会议整体流程 ...
- C#故事
C# 在腾讯的发展 <先定个小目标, 使用C# 开发的千万级应用> Xamarin 携程使用.Net技术 分布式高并发redis MQ dubbo kafka zookeeper
- Android 多屏幕适配 dp和px的关系
一直以来别人经常问我,android的多屏幕适配到底是怎么弄,我也不知道如何讲解清楚,或许自己也是挺迷糊. 以下得出的结论主要是结合官方文档进行分析的https://developer.android ...
- 【bzoj1878】[SDOI2009]HH的项链 树状数组
题目描述 HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此, 他的项链变得越来越长.有一 ...
- 使用HTML5的JavaScript选择器操作页面中的元素
<!doctype html><html lang="en"> <head> <meta charset="UTF-8& ...
- Lua学习笔记:面向对象
Lua学习笔记:面向对象 https://blog.csdn.net/liutianshx2012/article/details/41921077 Lua 中只存在表(Table)这么唯一一种数据结 ...