Rebuilding Roads
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 10663   Accepted: 4891

Description

The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, number 1..N) after the terrible earthquake last May. The cows didn't have time to rebuild any extra roads, so now there is exactly one way to get from any given barn to any other barn. Thus, the farm transportation system can be represented as a tree.

Farmer John wants to know how much damage another earthquake could
do. He wants to know the minimum number of roads whose destruction
would isolate a subtree of exactly P (1 <= P <= N) barns from the
rest of the barns.

Input

* Line 1: Two integers, N and P

* Lines 2..N: N-1 lines, each with two integers I and J. Node I is node J's parent in the tree of roads.

Output

A
single line containing the integer that is the minimum number of roads
that need to be destroyed for a subtree of P nodes to be isolated.

Sample Input

11 6
1 2
1 3
1 4
1 5
2 6
2 7
2 8
4 9
4 10
4 11

Sample Output

2

Hint

[A subtree with nodes (1, 2, 3, 6, 7, 8) will become isolated if roads 1-4 and 1-5 are destroyed.]

题意:在n个结点n-1条边的树中取m个点所需要的最少切割数.

分析:dp[u][i]代表以u为根节点的子树要得到i个结点的子树需要最少的切割数 如果考虑u的子树v,如果我们在除去v之外的父亲树中取k个点,那么在子树中取i-k个点
dp[u][i] = min(dp[u][k]+dp[v][i-k]) ........1
如果不考虑v,那么我们只需要一刀将子树k与父亲分开即可dp[u][i] = dp[u][i]+1; ..........2
综上述:dp[u][i] = min(1,2)
我们在考虑u的时候,等于u是一个容量为m(m为背包容量)的背包,在子树中取m个结点组成,每个点只有取或不取一个,所以可以将其看成01背包。

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm>
#define N 155
using namespace std; int head[N];
struct Edge{
int u,v,next;
}edge[N]; int indegree[N];
void addEdge(int u,int v,int &k){
edge[k].u = u,edge[k].v = v;
edge[k].next = head[u],head[u]=k++;
}
int n,m;
int dp[N][N];///dp[u][i]代表以u为根节点的子树要得到i个结点的子树需要最少的切割数
/// 如果考虑u的子树v,如果我们在父亲树中取k个点,那么在子树中取i-k个点
///dp[u][i] = min(dp[u][k],dp[v][i-k])
///如果不考虑v,那么我们只需要一刀将子树k与父亲分开即可 dp[u][i] = dp[u][i]+1;
///综上述:dp[u][i] = min(min(dp[u][k],dp[v][i-k]),dp[u][i]+1)
///我们在考虑u的时候,等于u是一个容量为m(m为背包容量)的背包,在子树中取m个结点组成,每个点只有取或不取且最多取一次,所以
void dfs(int u){
for(int i=;i<=m;i++) dp[u][i]=;
dp[u][]=; ///初始化只取自己一个点
for(int k = head[u];k!=-;k=edge[k].next){
int v = edge[k].v;
dfs(v);
for(int j=m;j>=;j--){ ///逆序枚举
dp[u][j]+=; ///不取子树时
for(int k=;k<j;k++){ ///父亲树上取得点
int t = j-k; ///子树上取的点
dp[u][j] = min(dp[u][k]+dp[v][t],dp[u][j]);
}
}
}
}
int main()
{ while(scanf("%d%d",&n,&m)!=EOF){
memset(indegree,,sizeof(indegree));
memset(head,-,sizeof(head));
int tot = ;
int u,v;
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
addEdge(u,v,tot);
indegree[v]++;
}
int root ;
for(int i=;i<=n;i++) if(indegree[i]==){root = i;break;}
//printf("%d\n",root);
dfs(root);
int ans = dp[root][m];
for(int i=;i<=n;i++){ ///加一是因为父亲结点和它之间还有边连着
if(dp[i][m]+<ans) ans = dp[i][m]+;
}
printf("%d\n",ans);
}
return ;
}

poj 1947(树形DP+背包)的更多相关文章

  1. POJ 1155 (树形DP+背包+优化)

    题目链接: http://poj.org/problem?id=1155 题目大意:电视台转播节目.对于每个根,其子结点可能是用户,也可能是中转站.但是用户肯定是叶子结点.传到中转站或是用户都要花钱, ...

  2. poj 1947 树形dp

    思路:dp[i][j]表示,以i节点为根,删去j个节点最少要断几条边. 那么dp[u][j]=min(dp[u][j],dp[v][k]+dp[u][j-k]);//选取最优状态 dp[u][j]=m ...

  3. Fire (poj 2152 树形dp)

    Fire (poj 2152 树形dp) 给定一棵n个结点的树(1<n<=1000).现在要选择某些点,使得整棵树都被覆盖到.当选择第i个点的时候,可以覆盖和它距离在d[i]之内的结点,同 ...

  4. URAL_1018 Binary Apple Tree 树形DP+背包

    这个题目给定一棵树,以及树的每个树枝的苹果数量,要求在保留K个树枝的情况下最多能保留多少个苹果 一看就觉得是个树形DP,然后想出 dp[i][j]来表示第i个节点保留j个树枝的最大苹果数,但是在树形过 ...

  5. hdu1561 The more, The Better (树形dp+背包)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1561 思路:树形dp+01背包 //看注释可以懂 用vector建树更简单. 代码: #i ...

  6. poj 1463(树形dp)

    题目链接:http://poj.org/problem?id=1463 思路:简单树形dp,如果不选父亲节点,则他的所有的儿子节点都必须选,如果选择了父亲节点,则儿子节点可选,可不选,取较小者. #i ...

  7. poj 2486( 树形dp)

    题目链接:http://poj.org/problem?id=2486 思路:经典的树形dp,想了好久的状态转移.dp[i][j][0]表示从i出发走了j步最后没有回到i,dp[i][j][1]表示从 ...

  8. poj 3140(树形dp)

    题目链接:http://poj.org/problem?id=3140 思路:简单树形dp题,dp[u]表示以u为根的子树的人数和. #include<iostream> #include ...

  9. codeforces 212E IT Restaurants(树形dp+背包思想)

    题目链接:http://codeforces.com/problemset/problem/212/E 题目大意:给你一个无向树,现在用两种颜色去给这颗树上的节点染色.用(a,b)表示两种颜色分别染的 ...

随机推荐

  1. 正则匹配java多行注释

    类似: /** * This method was generated by MyBatis Generator. * This method returns the value of the dat ...

  2. lintcode-74-第一个错误的代码版本

    74-第一个错误的代码版本 代码库的版本号是从 1 到 n 的整数.某一天,有人提交了错误版本的代码,因此造成自身及之后版本的代码在单元测试中均出错.请找出第一个错误的版本号. 你可以通过 isBad ...

  3. WCF身份验证一:消息安全模式之<Certificate>身份验证

    消息安全模式的证书身份验证方式,基于WSHttpBinding绑定协议的实现过程.主要内容:基本概念,然后是制作证书.服务端配置.客户端配置.总结.这里应该和Transport传输安全模式之证书身份验 ...

  4. ECharts饼图制作分析

    ECharts,缩写来自Enterprise Charts,商业级数据图表,一个纯Javascript的图表库,可以流畅的运行在PC和移动设备上,兼容当前绝大部分浏览器(IE6/7/8/9/10/11 ...

  5. 【C++ troubleshooting】A case about decltype

    template <typename iter_t> bool next_permutation(iter_t beg, iter_t end) { // if (beg == end | ...

  6. [UVA1625]Color Length

    题面在这里 description 输入两个长度分别为\(n\)和\(m\)的颜色序列,要求按顺序合并成同一个序列,即每次可以把一个序列开头的颜色放到新序列的尾部. 对于每个颜色\(c\)来说,其跨度 ...

  7. spring事务不回滚 自己抛的异常

    在service代码中   throw new Excepion("自定义异常“) 发现没有回滚, 然后百度了下, 改为抛出运行时异常  throw new RuntimeException ...

  8. mysql__视图

    视图 1.什么是视图 视图是一种虚拟存在的表,对于使用视图的用户来说基本上是透明的.视图并不是在数据库中实际存在的,行和列数据来自定义视图的查询中使用的表,并且是在使用视图时动态生成的 视图相对于普通 ...

  9. 函数实现多个按钮控制一个div

    <!DOCTYPE HTML><html><head> <meta http-equiv="txttent-Type" txttent=& ...

  10. oracle中分页的知识

    一:前言 自从出来实习后,基本上都没有按下心来总结下自己学的知识点,刚刚好现在快要国庆了,没有到深圳出差,在公司呆了三天,可以说是在公司打了三天的酱油啊,所以前两天都是在看些正则的文档,并且写了下总结 ...