Rebuilding Roads
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 10663   Accepted: 4891

Description

The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, number 1..N) after the terrible earthquake last May. The cows didn't have time to rebuild any extra roads, so now there is exactly one way to get from any given barn to any other barn. Thus, the farm transportation system can be represented as a tree.

Farmer John wants to know how much damage another earthquake could
do. He wants to know the minimum number of roads whose destruction
would isolate a subtree of exactly P (1 <= P <= N) barns from the
rest of the barns.

Input

* Line 1: Two integers, N and P

* Lines 2..N: N-1 lines, each with two integers I and J. Node I is node J's parent in the tree of roads.

Output

A
single line containing the integer that is the minimum number of roads
that need to be destroyed for a subtree of P nodes to be isolated.

Sample Input

11 6
1 2
1 3
1 4
1 5
2 6
2 7
2 8
4 9
4 10
4 11

Sample Output

2

Hint

[A subtree with nodes (1, 2, 3, 6, 7, 8) will become isolated if roads 1-4 and 1-5 are destroyed.]

题意:在n个结点n-1条边的树中取m个点所需要的最少切割数.

分析:dp[u][i]代表以u为根节点的子树要得到i个结点的子树需要最少的切割数 如果考虑u的子树v,如果我们在除去v之外的父亲树中取k个点,那么在子树中取i-k个点
dp[u][i] = min(dp[u][k]+dp[v][i-k]) ........1
如果不考虑v,那么我们只需要一刀将子树k与父亲分开即可dp[u][i] = dp[u][i]+1; ..........2
综上述:dp[u][i] = min(1,2)
我们在考虑u的时候,等于u是一个容量为m(m为背包容量)的背包,在子树中取m个结点组成,每个点只有取或不取一个,所以可以将其看成01背包。

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm>
#define N 155
using namespace std; int head[N];
struct Edge{
int u,v,next;
}edge[N]; int indegree[N];
void addEdge(int u,int v,int &k){
edge[k].u = u,edge[k].v = v;
edge[k].next = head[u],head[u]=k++;
}
int n,m;
int dp[N][N];///dp[u][i]代表以u为根节点的子树要得到i个结点的子树需要最少的切割数
/// 如果考虑u的子树v,如果我们在父亲树中取k个点,那么在子树中取i-k个点
///dp[u][i] = min(dp[u][k],dp[v][i-k])
///如果不考虑v,那么我们只需要一刀将子树k与父亲分开即可 dp[u][i] = dp[u][i]+1;
///综上述:dp[u][i] = min(min(dp[u][k],dp[v][i-k]),dp[u][i]+1)
///我们在考虑u的时候,等于u是一个容量为m(m为背包容量)的背包,在子树中取m个结点组成,每个点只有取或不取且最多取一次,所以
void dfs(int u){
for(int i=;i<=m;i++) dp[u][i]=;
dp[u][]=; ///初始化只取自己一个点
for(int k = head[u];k!=-;k=edge[k].next){
int v = edge[k].v;
dfs(v);
for(int j=m;j>=;j--){ ///逆序枚举
dp[u][j]+=; ///不取子树时
for(int k=;k<j;k++){ ///父亲树上取得点
int t = j-k; ///子树上取的点
dp[u][j] = min(dp[u][k]+dp[v][t],dp[u][j]);
}
}
}
}
int main()
{ while(scanf("%d%d",&n,&m)!=EOF){
memset(indegree,,sizeof(indegree));
memset(head,-,sizeof(head));
int tot = ;
int u,v;
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
addEdge(u,v,tot);
indegree[v]++;
}
int root ;
for(int i=;i<=n;i++) if(indegree[i]==){root = i;break;}
//printf("%d\n",root);
dfs(root);
int ans = dp[root][m];
for(int i=;i<=n;i++){ ///加一是因为父亲结点和它之间还有边连着
if(dp[i][m]+<ans) ans = dp[i][m]+;
}
printf("%d\n",ans);
}
return ;
}

poj 1947(树形DP+背包)的更多相关文章

  1. POJ 1155 (树形DP+背包+优化)

    题目链接: http://poj.org/problem?id=1155 题目大意:电视台转播节目.对于每个根,其子结点可能是用户,也可能是中转站.但是用户肯定是叶子结点.传到中转站或是用户都要花钱, ...

  2. poj 1947 树形dp

    思路:dp[i][j]表示,以i节点为根,删去j个节点最少要断几条边. 那么dp[u][j]=min(dp[u][j],dp[v][k]+dp[u][j-k]);//选取最优状态 dp[u][j]=m ...

  3. Fire (poj 2152 树形dp)

    Fire (poj 2152 树形dp) 给定一棵n个结点的树(1<n<=1000).现在要选择某些点,使得整棵树都被覆盖到.当选择第i个点的时候,可以覆盖和它距离在d[i]之内的结点,同 ...

  4. URAL_1018 Binary Apple Tree 树形DP+背包

    这个题目给定一棵树,以及树的每个树枝的苹果数量,要求在保留K个树枝的情况下最多能保留多少个苹果 一看就觉得是个树形DP,然后想出 dp[i][j]来表示第i个节点保留j个树枝的最大苹果数,但是在树形过 ...

  5. hdu1561 The more, The Better (树形dp+背包)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1561 思路:树形dp+01背包 //看注释可以懂 用vector建树更简单. 代码: #i ...

  6. poj 1463(树形dp)

    题目链接:http://poj.org/problem?id=1463 思路:简单树形dp,如果不选父亲节点,则他的所有的儿子节点都必须选,如果选择了父亲节点,则儿子节点可选,可不选,取较小者. #i ...

  7. poj 2486( 树形dp)

    题目链接:http://poj.org/problem?id=2486 思路:经典的树形dp,想了好久的状态转移.dp[i][j][0]表示从i出发走了j步最后没有回到i,dp[i][j][1]表示从 ...

  8. poj 3140(树形dp)

    题目链接:http://poj.org/problem?id=3140 思路:简单树形dp题,dp[u]表示以u为根的子树的人数和. #include<iostream> #include ...

  9. codeforces 212E IT Restaurants(树形dp+背包思想)

    题目链接:http://codeforces.com/problemset/problem/212/E 题目大意:给你一个无向树,现在用两种颜色去给这颗树上的节点染色.用(a,b)表示两种颜色分别染的 ...

随机推荐

  1. C#-WinForm控制输入框只接受数字输入

    背景 给导师上一节c#编写数据库应用程序的课,模拟ATM自助取款机的功能写了个winForm程序,关于金额的输入肯定是数字,因此避免输入格式不正确的数字带来异常,直接在输入时进行校验. 封装函数 C# ...

  2. HDU 1398 Square Coins 整数拆分变形 母函数

    欢迎参加——BestCoder周年纪念赛(高质量题目+多重奖励) Square Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit ...

  3. Java 中的异常和处理详解(转载)

    原文出处: 代码钢琴家 简介 程序运行时,发生的不被期望的事件,它阻止了程序按照程序员的预期正常执行,这就是异常.异常发生时,是任程序自生自灭,立刻退出终止,还是输出错误给用户?或者用C语言风格:用函 ...

  4. PAT 甲级 1015 Reversible Primes

    https://pintia.cn/problem-sets/994805342720868352/problems/994805495863296000 A reversible prime in ...

  5. 多线程 调用多线程的方法 Runtime与ProcessBuilder

    一般我们使用Java运行其他类中的方法的时候,无论是静态调用还是动态调用,都是在当前的进程中执行的.也就是只有一个Java虚拟机实例在运行.有时候需要通过Java代码启动多个Java子进程,这样做会消 ...

  6. hdu 2838 Cow Sorting (树状数组)

    Cow Sorting Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  7. Powershell使用真实的对象工作

    Powershell使用真实的对象工作 来源 https://www.pstips.net/powershell-work-with-reallife-objects.html 每一个Powershe ...

  8. [洛谷P1879][USACO06NOV]玉米田Corn Fields

    题目大意:有一个$n\times m$的矩阵,$(1 \leq m \leq 12; 1 \leq n \leq 12)$,想在其中的一些格子中种草,一些格子不能种草,且两块草地不相邻.问有多少种种植 ...

  9. VB托盘图标不响应WM_MOUSEMOVE的原因及解决方法

    文章参考地址:http://blog.csdn.net/txh0001/article/details/38265895:http://bbs.csdn.net/topics/330106030 网上 ...

  10. Java的外部类为什么不能使用private、protected进行修饰

    对于顶级类(外部类)来说,只有两种修饰符:public和默认(default).因为外部类的上一单元是包,所以外部类只有两个作用域:同包,任何位置.因此,只需要两种控制权限:包控制权限和公开访问权限, ...