bzoj 5302: [Haoi2018]奇怪的背包
Description

Solution
首先 \(v_1,v_2,v_3...v_n,P\) 能够构成的最小数是 \(gcd(P,v_1,v_2,v_3...v_n)\)
然后 \(gcd(P,v_1,v_2,v_3...v_n)|w_i\) 则可以构成 \(w_i\)
所以我们直接背包一下就可以了,设 \(m\) 为 \(P\) 的约数个数,\(m\) 最多是 \(n^{\frac{1}{3}}\)
那么复杂度就是 \(O(n*m*logP)\)
容易发现如果 \(gcd(v_i,P)=gcd(v_j,P)\) ,那么 \(v_i,v_j\) 对答案的影响是一样的,把相同类型的一起处理,把答案乘上 \(2^{cnt}-1\) 就行了
复杂度 \(O(m^2*logP)\)
#include<bits/stdc++.h>
using namespace std;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c<='9'&&c>='0';c=getchar())x=x*10+(c&15);x*=f;
}
const int N=1e6+10,mod=1e9+7;
int n,Q,P,num=0,a[N],m=0,c[N],f[2010][2010],bin[N],ans[N];
map<int,int>id;
inline void priwork(){
for(int i=1;i*i<=P;i++)
if(P%i==0){
a[++m]=i;
if(i*i!=P)a[++m]=P/i;
}
sort(a+1,a+m+1);
for(int i=1;i<=m;i++)id[a[i]]=i;
}
inline int gcd(int x,int y){return y?gcd(y,x%y):x;}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
cin>>n>>Q>>P;
priwork();
int x;bin[0]=1;
for(int i=1;i<=n;i++)gi(x),c[id[gcd(x,P)]]++,bin[i]=bin[i-1]*2%mod;
f[0][m]=1;
for(int i=1;i<=m;i++){
for(int j=1;j<=m;j++){
if(c[i]){
int p=id[gcd(a[i],a[j])];
f[i][p]=(f[i][p]+1ll*f[i-1][j]*(bin[c[i]]-1))%mod;
}
f[i][j]=(f[i][j]+f[i-1][j])%mod;
}
}
for(int i=1;i<=m;i++)
for(int j=1;j<=i;j++)
if(a[i]%a[j]==0)ans[i]=(ans[i]+f[m][j])%mod;
while(Q--){
gi(x);
printf("%d\n",ans[id[gcd(x,P)]]);
}
return 0;
}
bzoj 5302: [Haoi2018]奇怪的背包的更多相关文章
- 【BZOJ5302】[HAOI2018]奇怪的背包(动态规划,容斥原理)
[BZOJ5302][HAOI2018]奇怪的背包(动态规划,容斥原理) 题面 BZOJ 洛谷 题解 为啥泥萌做法和我都不一样啊 一个重量为\(V_i\)的物品,可以放出所有\(gcd(V_i,P)\ ...
- BZOJ5302: [Haoi2018]奇怪的背包
BZOJ5302: [Haoi2018]奇怪的背包 https://lydsy.com/JudgeOnline/problem.php?id=5302 分析: 方程\(\sum\limits_{i=1 ...
- [HAOI2018]奇怪的背包 (DP,数论)
[HAOI2018]奇怪的背包 \(solution:\) 首先,这一道题目的描述很像完全背包,但它所说的背包总重量是在模P意义下的,所以肯定会用到数论.我们先分析一下,每一个物品可以放无数次,可以达 ...
- 洛谷 P4495 [HAOI2018]奇怪的背包 解题报告
P4495 [HAOI2018]奇怪的背包 题目描述 小\(C\)非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数\(P\),当他 向这个背包内放入若干个物品后,背包的重量是物品总体积对\(P ...
- BZOJ5302 [HAOI2018]奇怪的背包 【数论 + dp】
题目 小 CC 非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数 PP ,当他 向这个背包内放入若干个物品后,背包的重量是物品总体积对 PP 取模后的结果. 现在小 CC 有 nn 种体积不同 ...
- haoi2018奇怪的背包题解
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=5302 对于一个物品,设它体积为v,那么,在背包参数为p的情况下,它能达到gcd(v,p ...
- Luogu4495 [HAOI2018] 奇怪的背包 【扩展欧几里得算法】
题目分析: 首先打个暴力求一下$10^9$以内因子最多的数的因子个数,发现只有$1344$个. 由于有$ax+by=k*(a,b)$和2017年noip的结论,所以我们可以发现对于任意多个数$a_1, ...
- [HAOI2018]奇怪的背包
题目 暴力\(dp\)好有道理啊 于是我们来个反演吧 考虑一个体积序列\(\{v_1,v_2,...v_n\}\)能凑成\(w\)的条件 显然是 \[v_1x_1+v_2x_2+...+v_nx_n\ ...
- BZOJ5302 HAOI2018奇怪的背包(动态规划)
由裴蜀定理,子集S有解当且仅当gcd(S,P)|w. 一个显然的dp是设f[i][j]为前i个数gcd为j的选取方案.注意到这里的gcd一定是P的约数,所以状态数是n√P的.然后可以通过这个得到gcd ...
随机推荐
- dota有哪些经典的典故或笑话?
----------------------------------------------------dota有哪些经典的典故或笑话?虽然现在玩游戏也没什么热情了, 但是看到这些还是笑尿,笑点低 = ...
- Windowns DOS For 循环实例
update_all.bat代码示例: @echo off echo ***************************************************************** ...
- 【bzoj3512】DZY Loves Math IV 杜教筛+记忆化搜索+欧拉函数
Description 给定n,m,求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\varphi(ij)\)模10^9+7的值. Input 仅一行,两个整数n,m. Output 仅 ...
- 【洛谷2416】泡芙(Tarjan+LCA)
题目描述 火星猫经过一番努力终于到达了冥王星.他发现冥王星有 \(N\) 座城市,\(M\) 条无向边.火星猫准备出发去找冥王兔,他听说有若干泡芙掉落在一些边上,他准备采集一些去送给冥王兔.但是火星猫 ...
- vector<vector<int>> 使用简单示例
#include <iostream> #include <vector> using namespace std; int main() { vector<vector ...
- 安装python发行版本,并用conda来管理Environments,Python,packages
简介:anaconda指的是一个开源的python发行版本,其包含了conda.Python等180多个科学包及其依赖项. 因为包含了大量的科学包,Anaconda 的下载文件比较大(约 515 MB ...
- 查看SELinux状态及关闭SELinux
查看SELinux状态: 输入:/usr/sbin/sestatus -v SELinux status: enabled ##开启状态 关闭SELinux 修改vi /etc/s ...
- Linux环境查看系统参数
一.查看CPU信息 lscpu cat /proc/cpuinfo 二.查看CPU位数 getconf LONG_BIT 三.查看MEM信息 free free -m cat /proc/me ...
- python shell 清屏(window)
IDLE增加一个清屏的扩展ClearWindow就可以了(在Issue 6143: IDLE中可以看到这个扩展的说明) 安装使用的方法 1.下载ClearWindow.py(右击-目标另存为,格式为p ...
- C++_基础2-复合数据类型
C语言使用术语“派生类型”,C++对类关系使用术语“派生”.所以就改用“复合类型”. 数组 数组是一种数据格式,能够存储多个同类型的值. 数组声明应指出以下三点: 存储在每个元素中的值的类型: 数组名 ...