uva12546. LCM Pair Sum

One of your friends desperately needs your help. He is working with a secret agency and doing some encoding stuffs. As the mission is confidential he does not tell you much about that, he just want you to help him with a special property of a number. This property can be expressed as a function f (n) for a positive integer n. It is defined as: 
f (n) = (p + q)

In other words, he needs the sum of all possible pairs whose least common multiple is n. (The least common multiple (LCM) of two numbers p and q is the lowest positive integer which can be perfectly divided by both p and q). For example, there are 5 different pairs having their LCM equal to 6 as (1, 6), (2, 6), (2, 3), (3, 6), (6, 6). So f (6) is calculated as f (6) = (1 + 6) + (2 + 6) + (2 + 3) + (3 + 6) + (6 + 6) = 7 + 8 + 5 + 9 + 12 = 41.

Your friend knows you are good at solving this kind of problems, so he asked you to lend a hand. He also does not want to disturb you much, so to assist you he has factorized the number. He thinks it may help you.

Input

The first line of input will contain the number of test cases T (T500). After that there will be T test cases. Each of the test cases will start with a positive number C (C15) denoting the number of prime factors of n. Then there will be C lines each containing two numbers Pi and ai denoting the prime factor and its power (Pi is a prime between 2 and 1000) and ( 1ai50). All the primes for an input case will be distinct.

Output

For each of the test cases produce one line of output denoting the case number and f (n) modulo 1000000007. See the output for sample input forexact formatting.

Sample Input

3
2
2 1
3 1
2
2 2
3 1
1
5 1

Sample Output

Case 1: 41
Case 2: 117
Case 3: 16

这道题目也也搞了很长时间,算是初识母函数吧,这道题目用到了这种思想。做完了,感觉还是不太明白怎么就能用

(1+a1+a1^2...(c1+1)*a1^c1)*(1+a2+a2^2...(c2+1)*a2^c2)*.....*(1+am+am^2...(cm+1)*am^cm)+n 这个公式。

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int MOD = ; int main() {
int TCase;
cin >> TCase;
for(int t = ; t <= TCase; ++t) {
long long n, p, c;
long long ans = , flag = ;
cin >> n;
for(int i = ; i != n; ++i) {
long long tmp = , fac = ;
cin >> p >> c;
for(int j = ; j != c; ++j) {
fac = (fac * p) % MOD;
tmp = (tmp + fac) % MOD;
}
tmp = (tmp + (fac * c) % MOD) % MOD;
flag = (fac * flag) % MOD;
ans = (ans * tmp) % MOD;
}
ans = (ans + flag) % MOD;
cout << "Case " << t << ": " << ans << endl;
}
return ;
}

uva12546. LCM Pair Sum的更多相关文章

  1. bzoj3114 LCM Pair Sum

    题意:以质因数分解的方式给定n,求所有满足:lcm(a, b) = n的无序数对的价值和.其中(a, b)的价值为a + b 解: 定义首项为a,公比为q,项数为n的等比数列的和为getQ(a, q, ...

  2. light oj 1236 - Pairs Forming LCM & uva 12546 - LCM Pair Sum

    第一题给定一个大数,分解质因数,每个质因子的个数为e1,e2,e3,……em, 则结果为((1+2*e1)*(1+2*e2)……(1+2*em)+1)/2. 代码如下: #include <st ...

  3. UVA12546_LCM Pair Sum

    题目的意思是求 [西伽马(p+q)]其中lcm(p,q)=n. 又见数论呀. 其实这个题目很简单,考虑清楚了可以很简单的方法飘过. 我一开始是这样来考虑的. 对于每一个单独的质因子,如果为p,它的次数 ...

  4. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  5. Subarray Sum Closest

    Question Given an integer array, find a subarray with sum closest to zero. Return the indexes of the ...

  6. LeetCode 1099. Two Sum Less Than K

    原题链接在这里:https://leetcode.com/problems/two-sum-less-than-k/ 题目: Given an array A of integers and inte ...

  7. [LC] 1099. Two Sum Less Than K

    Given an array A of integers and integer K, return the maximum S such that there exists i < j wit ...

  8. 【LeetCode】1099. Two Sum Less Than K 解题报告(C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力求解 日期 题目地址:https://leetco ...

  9. Java中的泛型 (上) - 基本概念和原理

    本节我们主要来介绍泛型的基本概念和原理 后续章节我们会介绍各种容器类,容器类可以说是日常程序开发中天天用到的,没有容器类,难以想象能开发什么真正有用的程序.而容器类是基于泛型的,不理解泛型,我们就难以 ...

随机推荐

  1. asp.net Literal

    常用于动态向页面添加内容 Panel panel = new Panel(); Literal literal = new Literal(); literal.Text = "<br ...

  2. thinkphp3.2.3关于模板使用之一二

    1.包含文件 使用场景:比如我们在编写网页布局的时候,可能每一个网页的头和脚是相同的,此时如果给每一个网页分别设置,未免太麻烦了.此时就可以使用带包含文件. 首先检查配置文件查看我们的主题目录在哪儿, ...

  3. PHP判断变量是否存在及函数isset() 、empty()与is_null的区别

    一.举例说明 A.如何判断一个变量是否定义? <?php // 假设不存在$test 变量 if (isset($test)) { echo '$test 已经set', '<br/> ...

  4. MySQL Cluster在线添加数据节点

    增加或减少数据节点的数量和 NoOfReplicas(即副本数,通过管理节点的config.ini配置文件来设置)有关,一般来说NoOfReplicas是2,那么增加或减少的数量也应该是成对的,否则要 ...

  5. OpenVPN使用用户名/密码验证方式

    OpenVPN推荐使用证书进行认证,安全性很高,但是配置起来很麻烦.还好它也能像pptp等vpn一样使用用户名/密码进行认证. 不管何种认证方式,服务端的ca.crt, server.crt, ser ...

  6. json和pickle

    Pickle序列化 用于序列化的两个模块 json,用于字符串 和 python数据类型间进行转换 pickle,用于python特有的类型 和 python的数据类型间进行转换 python的pic ...

  7. 执行shell出现bad interpreter

    执行shell出现bad interpreter:No such file or directory linux执行shell出现bad interpreter:No such file or dir ...

  8. struts2 自定义校验规则

    自定义校验规则:(了解) 在Struts2自定义校验规则: 1.实现一个Validator 接口. 2.一般开发中继承ValidatorSupport 或者 FieldValidatorSupport ...

  9. Python操作rabbitmq 实践笔记

    发布/订阅  系统 1.基本用法 生产者 import pika import sys username = 'wt' #指定远程rabbitmq的用户名密码 pwd = ' user_pwd = p ...

  10. 深入解析PHP中的(伪)多线程与多进程

    本篇文章是对PHP中的(伪)多线程与多进程进行了详细的分析介绍,需要的朋友参考下 (伪)多线程:借助外力利用WEB服务器本身的多线程来处理,从WEB服务器多次调用我们需要实现多线程的程序.QUOTE: ...