uva12546. LCM Pair Sum
uva12546. LCM Pair Sum
(p + q)In other words, he needs the sum of all possible pairs whose least common multiple is n. (The least common multiple (LCM) of two numbers p and q is the lowest positive integer which can be perfectly divided by both p and q). For example, there are 5 different pairs having their LCM equal to 6 as (1, 6), (2, 6), (2, 3), (3, 6), (6, 6). So f (6) is calculated as f (6) = (1 + 6) + (2 + 6) + (2 + 3) + (3 + 6) + (6 + 6) = 7 + 8 + 5 + 9 + 12 = 41.
Your friend knows you are good at solving this kind of problems, so he asked you to lend a hand. He also does not want to disturb you much, so to assist you he has factorized the number. He thinks it may help you.
Input
The first line of input will contain the number of test cases T (T
500). After that there will be T test cases. Each of the test cases will start with a positive number C (C
15) denoting the number of prime factors of n. Then there will be C lines each containing two numbers Pi and ai denoting the prime factor and its power (Pi is a prime between 2 and 1000) and ( 1
ai
50). All the primes for an input case will be distinct.
Output
For each of the test cases produce one line of output denoting the case number and f (n) modulo 1000000007. See the output for sample input forexact formatting.
Sample Input
3
2
2 1
3 1
2
2 2
3 1
1
5 1
Sample Output
Case 1: 41
Case 2: 117
Case 3: 16
这道题目也也搞了很长时间,算是初识母函数吧,这道题目用到了这种思想。做完了,感觉还是不太明白怎么就能用
(1+a1+a1^2...(c1+1)*a1^c1)*(1+a2+a2^2...(c2+1)*a2^c2)*.....*(1+am+am^2...(cm+1)*am^cm)+n 这个公式。
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int MOD = ; int main() {
int TCase;
cin >> TCase;
for(int t = ; t <= TCase; ++t) {
long long n, p, c;
long long ans = , flag = ;
cin >> n;
for(int i = ; i != n; ++i) {
long long tmp = , fac = ;
cin >> p >> c;
for(int j = ; j != c; ++j) {
fac = (fac * p) % MOD;
tmp = (tmp + fac) % MOD;
}
tmp = (tmp + (fac * c) % MOD) % MOD;
flag = (fac * flag) % MOD;
ans = (ans * tmp) % MOD;
}
ans = (ans + flag) % MOD;
cout << "Case " << t << ": " << ans << endl;
}
return ;
}
uva12546. LCM Pair Sum的更多相关文章
- bzoj3114 LCM Pair Sum
题意:以质因数分解的方式给定n,求所有满足:lcm(a, b) = n的无序数对的价值和.其中(a, b)的价值为a + b 解: 定义首项为a,公比为q,项数为n的等比数列的和为getQ(a, q, ...
- light oj 1236 - Pairs Forming LCM & uva 12546 - LCM Pair Sum
第一题给定一个大数,分解质因数,每个质因子的个数为e1,e2,e3,……em, 则结果为((1+2*e1)*(1+2*e2)……(1+2*em)+1)/2. 代码如下: #include <st ...
- UVA12546_LCM Pair Sum
题目的意思是求 [西伽马(p+q)]其中lcm(p,q)=n. 又见数论呀. 其实这个题目很简单,考虑清楚了可以很简单的方法飘过. 我一开始是这样来考虑的. 对于每一个单独的质因子,如果为p,它的次数 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- Subarray Sum Closest
Question Given an integer array, find a subarray with sum closest to zero. Return the indexes of the ...
- LeetCode 1099. Two Sum Less Than K
原题链接在这里:https://leetcode.com/problems/two-sum-less-than-k/ 题目: Given an array A of integers and inte ...
- [LC] 1099. Two Sum Less Than K
Given an array A of integers and integer K, return the maximum S such that there exists i < j wit ...
- 【LeetCode】1099. Two Sum Less Than K 解题报告(C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力求解 日期 题目地址:https://leetco ...
- Java中的泛型 (上) - 基本概念和原理
本节我们主要来介绍泛型的基本概念和原理 后续章节我们会介绍各种容器类,容器类可以说是日常程序开发中天天用到的,没有容器类,难以想象能开发什么真正有用的程序.而容器类是基于泛型的,不理解泛型,我们就难以 ...
随机推荐
- git操作---查询
1.查看git的状态 git status 2.查看git的日志历史记录 git log 3.查看当前git的分支 git branch 4.查看git的配置信息 git config --lis ...
- C#直接赋值和反射赋值(无GC)的性能比较
using System; using System.Reflection; using System.Diagnostics; using System.Runtime.InteropService ...
- 使用Spring和SpringMVC管理bean时要注意的一个小细节
最近一直在做毕业设计...用到了Shiro和SpringMVC..用过shiro的朋友都知道shiro需要自己去写Realm,然后把Realm注入到SecurityManager中.而Security ...
- [NHibernate]Parent/Child
系列文章 [Nhibernate]体系结构 [NHibernate]ISessionFactory配置 [NHibernate]持久化类(Persistent Classes) [NHibernate ...
- zendstudio快捷键收录
360截屏快捷键:ctrl+shift+x zendstudio:注释代码:ctrl+shift+/ 删除光标所在行:ctrl+D 复制当前行:ctrl+alt+↓ 上下行互换:alt+↑/↓ 代码格 ...
- Node+Express+node-mysql 实战于演习 全套mysql(增删改查)
最近这段时间研究Node感觉不错,自己做了一个增删改查,虽然有些简陋,但是思想是想通的,其实所有项目都是增删改查,有助于初学者快速掌握Node 首先 本实例展示的是基于Node+Express+nod ...
- OC中的extern,static,const
const的作用: const仅仅用来修饰右边的变量(基本数据变量p,指针变量*p). 被const修饰的变量是只读的. static的作用: 修饰局部变量: 1.延长局部变量的生命周期,程序结束才会 ...
- tyvj1189 盖房子
描述 永恒の灵魂最近得到了面积为n*m的一大块土地(高兴ING^_^),他想在这块土地上建造一所房子,这个房子必须是正方形的.但是,这块土地并非十全十美,上面有很多不平坦的地方(也可以叫瑕疵).这些瑕 ...
- Swift3.0P1 语法指南——方法
原档:https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/Swift_Programmi ...
- 进阶系列三【绝对干货】----Log4.Net的介绍
一.介绍 当我们开发软件时,一般都会加入运行期的跟踪手段,以方便后续故障分析和Bug调试..net framework本身提供了一个System.Diagnostics.Trace类来实现流程跟踪功能 ...