昨天这题死活调不出来结果是一个地方没取模,凉凉。

  首先有个一眼就能看出来的规律...

  斐波那契数列满足$a_1, a_2, a_1+a_2, a_1+2a_2, 2a_1+3a_2, 3a_1+5a_2$

  也就是第k项是$fib(k-2)*a_1+fib(k-1)*a_2$

  问题就转化成了求$(fib(k-2)*a_1+fib(k-1)*a_2)\% p=m$,$a_2$在$[l,r]$上的个数。

  显然$fib(k-2)a_1$是个常数,那一看就是exgcd题了。。。

  令$a=fib(k-1),b=p,c=(m-fib(k-2)*a_1\% p+p)\% p$

  然后就变成了求$ax+by=c$,$x$在$[l,r]$上有几个解。

  先求出最小正整数解,然后二分一下就完了。

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
#define int long long
using namespace std;
const int maxn=, inf=1e9;
int n, a1, l, r, K, p, m, T, mod, x, y;
struct mtx {int mp[][];mtx(){memset(mp, , sizeof(mp));}}base, ans;
inline void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-'&&(f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
mtx operator*(mtx a, mtx b)
{
mtx c;
for(int i=;i<;i++)
for(int j=;j<;j++)
for(int k=;k<;k++)
c.mp[i][j]=(c.mp[i][j]+a.mp[i][k]*b.mp[k][j])%p;
return c;
}
void power(int b)
{
for(;b;b>>=, base=base*base)
if(b&) ans=ans*base;
}
int exgcd(int a, int b, int &x, int &y)
{
if(!b) return x=, y=, a;
int ans=exgcd(b, a%b, x, y);
int tmp=x; x=y; y=tmp-a/b*y;
return ans;
}
inline ll find(int x, int up)
{
int l=, r=up/p+;
while(l<r)
{
int mid=(l+r)>>;
if(x+p*mid>=up) r=mid;
else l=mid+;
}
return l;
}
#undef int
int main()
{
read(T);
while(T--)
{
base.mp[][]=base.mp[][]=base.mp[][]=; base.mp[][]=;
ans.mp[][]=ans.mp[][]=; ans.mp[][]=ans.mp[][]=;
read(a1); read(l); read(r); read(K); read(p); read(m); a1%=p;
power(K-); mod=(m-a1*ans.mp[][]%p+p)%p;
int d=exgcd(ans.mp[][], p, x, y);
if(mod%d!=) {puts(""); continue;}
x=x*(mod/d); p/=d; x=(x%p+p)%p;
printf("%lld\n", find(x, r+)-find(x, l));
}
}

「CodePlus 2017 12 月赛」可做题2(矩阵快速幂+exgcd+二分)的更多相关文章

  1. 【LIbreOJ】#6256. 「CodePlus 2017 12 月赛」可做题1

    [题意]定义一个n阶正方形矩阵为“巧妙的”当且仅当:任意选择其中n个不同行列的数字之和相同. 给定n*m的矩阵,T次询问以(x,y)为左上角的k阶矩阵是否巧妙.n,m<=500,T<=10 ...

  2. 【LibreOJ】#6257. 「CodePlus 2017 12 月赛」可做题2

    [题意]数列满足an=an-1+an-2,n>=3.现在a1=i,a2=[l,r],要求满足ak%p=m的整数a2有多少个.10^18. [算法]数论(扩欧)+矩阵快速幂 [题解]定义fib(i ...

  3. 「CodePlus 2017 11 月赛」可做题

    这种题先二进制拆位,显然改的位置只有每一段确定的数的开头和结尾,只需要对于每一个可决策位置都尝试一下填1和0,然后取min即可. #include<iostream> #include&l ...

  4. [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞

    [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞 试题描述 到河北省 见斯大林 / 在月光下 你的背影 / 让我们一起跳舞吧 うそだよ~ 河北省怎么可能有 Stalin. ...

  5. 「CodePlus 2017 12 月赛」火锅盛宴(模拟+树状数组)

    1A,拿来练手的好题 用一个优先队列按煮熟时间从小到大排序,被煮熟了就弹出来. 用n个vector维护每种食物的煮熟时间,显然是有序的. 用树状数组维护每种煮熟食物的数量. 每次操作前把优先队列里煮熟 ...

  6. 【LibreOJ】#6259. 「CodePlus 2017 12 月赛」白金元首与独舞

    [题目]给定n行m列的矩阵,每个位置有一个指示方向(上下左右)或没有指示方向(任意选择),要求给未定格(没有指示方向的位置)确定方向,使得从任意一个开始走都可以都出矩阵,求方案数.n,m<=20 ...

  7. 「CodePlus 2017 12 月赛」白金元首与独舞

    description 题面 data range \[ 1 \leq T \leq 10, 1 \leq n, m \leq 200 , 0 \leq k \leq \min(nm, 300)\] ...

  8. 走进矩阵树定理--「CodePlus 2017 12 月赛」白金元首与独舞

    n,m<=200,n*m的方阵,有ULRD表示在这个格子时下一步要走到哪里,有一些待决策的格子用.表示,可以填ULRD任意一个,问有多少种填法使得从每个格子出发都能走出这个方阵,答案取模.保证未 ...

  9. 「CodePlus 2017 12 月赛」火锅盛宴

    n<=100000种食物,给每个食物煮熟时间,有q<=500000个操作:在某时刻插入某个食物:查询熟食中编号最小的并删除之:查询是否有编号为id的食物,如果有查询是否有编号为id的熟食, ...

随机推荐

  1. C# 多线程的等待所有线程结束的一个问题

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3 ...

  2. selenium,unittest——下拉菜单操作,百度账号设置修改

    #encoding=utf-8from selenium import webdriverimport time,unittest, re,sysfrom HTMLTestRunner import ...

  3. AtCoder Regular Contest 101 D - Median of Medians

    二分答案 然后前缀和+树状数组来判断这个答案是否大于等于数 如果我们对于一个查询,如果小于这个数令为1,大于这个数领为-1 将所有前缀和放在树状数组中,就可以查询所有sum_{l} < sum_ ...

  4. python-生成器、迭代器、装饰器

    目录 动态语言和静态语言 __slots__ 生成器 迭代器 闭包 装饰器 动态语言和静态语言 动态语言可以在运行的过程中修改代码,例如python在运行的过程中给已创建好的类添加属性和方法. 静态语 ...

  5. RedHat yum源配置

    RedHat yum源配置 原本以为Redhat7 和Centos7是完全一样的,可是安装完Redhat7以后,使用yum安装软件,提示红帽操作系统未注册.在网上搜索教程,最后成功解决,解决方式是将y ...

  6. Python科学计算库灬numpy

    Numpy NumPy是一个功能强大的Python库,主要用于对多维数组执行计算.Numpy许多底层函数实际上是用C编写的,因此它的矩阵向量计算速度是原生Python中无法比拟的. numpy属性 维 ...

  7. Python基础灬异常

    异常&异常处理 异常!=错误 在程序运行过程中,总会遇到各种各样的错误. 有的错误是程序编写有问题造成的,比如本来应该输出整数结果输出了字符串,这种错误我们通常称之为bug,bug是必须修复的 ...

  8. PSP Daily软件Alpha版本——基于NABCD评论,及改进建议

    1.根据(不限于)NABCD评论作品的选题: 此软件的用户人群较为明确,即:用户(软件工程课上学生)记录例行报告.写每周PSP表格和统计的需求.潜在用户还有未来该课堂的学生和需要用PSP方法记录任务完 ...

  9. Python学习之路6 - 装饰器

    装饰器 定义:本质是函数,(装饰其他函数)就是为其他函数添加附加功能.原则:1.不能修改被装饰的函数的源代码 2.不能修改被装饰的函数的调用方式 实现装饰器的知识储备: 1.函数即“变量” 2.高阶函 ...

  10. 《Linux内核与分析》第八周

    by 20135130王川东 一.进程切换关键代码switch-to分析     1.进程调度与进程调度时机分析 1)不同类型的进程有不同的调度要求 分类:I/0-bound:频繁的进行I/o 通常会 ...