UVALive-2966 King's Quest(强连通+二分图匹配)
题目大意:有n个男孩和和n个女孩,已只每个男孩喜欢的女孩。一个男孩只能娶一个女孩、一个女孩只能嫁一个男孩并且男孩只娶自己喜欢的女孩,现在已知一种他们的结婚方案,现在要求找出每个男孩可以娶的女孩(娶完之后不能影响其他男孩结婚)。
题目分析:已知的结婚方案是一个完全匹配。从每个男孩出发向他喜欢的女孩连一条有向边,得到一张完全二分图,实际上这道题是让判断去掉哪一些边使图仍然完全匹配。设男生x1和女生y1是已知方案中要结婚的两个人,假如x1抛弃y1,选择了他也喜欢的y2结婚(也就是去掉边x1->y2),那么就得需要让原方案中y2的结婚对象x2选择一个他喜欢的女孩(不能再是y2)结婚,一直进行下去这个过程,y1终究会被选走(如果去边之后的图仍完全匹配)。这正是匈牙利算法的过程,但这样要超时。但是,如果将从y1出发连一条边到x1,那么这个过程所经过的所有点就构成了一个强连通分量。对于某个男孩,娶和他在同一强连通分量的任何一个女孩都不会影响其他男孩结婚。
代码如下:
# include<iostream>
# include<cstdio>
# include<stack>
# include<vector>
# include<cstring>
# include<iostream>
using namespace std;
# define REP(i,s,n) for(int i=s;i<n;++i)
# define CL(a,b) memset(a,b,sizeof(a))
# define CLL(a,b,n) fill(a,a+n,b) const int N=2005;
struct Edge
{
int to,nxt;
};
Edge e[N*100+N];
stack<int>S;
int scc_cnt,dfs_cnt,cnt,n,head[2*N],sccno[2*N];
int low[2*N],pre[2*N],G[N][N];
vector<int>ans; void add(int u,int v)
{
e[cnt].to=v;
e[cnt].nxt=head[u];
head[u]=cnt++;
} void dfs(int u)
{
S.push(u);
low[u]=pre[u]=++dfs_cnt;
for(int i=head[u];i!=-1;i=e[i].nxt){
int v=e[i].to;
if(!pre[v]){
dfs(v);
low[u]=min(low[u],low[v]);
}else if(!sccno[v])
low[u]=min(low[u],pre[v]);
}
if(low[u]==pre[u]){
++scc_cnt;
while(1){
int x=S.top(); S.pop();
sccno[x]=scc_cnt;
if(x==u) break;
}
}
} void findScc()
{
scc_cnt=dfs_cnt=0;
CL(pre,0);
CL(sccno,0);
REP(i,1,n+1) if(!pre[i]) dfs(i);
} int main()
{
while(~scanf("%d",&n))
{
int k,a;
cnt=0;
CL(G,0);
CL(head,-1);
REP(i,1,n+1){
scanf("%d",&k);
while(k--)
{
scanf("%d",&a);
add(i,a+n);
G[i][a]=1;
}
}
REP(i,1,n+1){
scanf("%d",&a);
add(a+n,i);
}
findScc();
REP(i,1,n+1){
ans.clear();
REP(j,n+1,2*n+1) if(G[i][j-n]&&sccno[i]==sccno[j])
ans.push_back(j-n);
printf("%d",ans.size());
REP(j,0,ans.size()) printf(" %d",ans[j]);
printf("\n");
}
}
return 0;
}
UVALive-2966 King's Quest(强连通+二分图匹配)的更多相关文章
- POJ1904 King's Quest(完备匹配可行边:强连通分量)
题目大概就是说给一张二分图以及它的一个完备匹配,现在问X部的各个点可以与Y部那些些点匹配,使得X部其余点都能找到完备匹配. 枚举然后匹配,当然不行,会超时. 这题的解法是,在二分图基础上建一个有向图: ...
- POJ 1904 King's Quest ★(强连通分量:可行完美匹配边)
题意 有n个女生和n个男生,给定一些关系表示男生喜欢女生(即两个人可以结婚),再给定一个初始匹配,表示这个男生和哪个女生结婚,初始匹配必定是合法的.求每个男生可以和哪几个女生可以结婚且能与所有人不发生 ...
- POJ 1904 King's Quest (强连通分量+完美匹配)
<题目链接> 题目大意: 有n个王子,每个王子都有k个喜欢的妹子,每个王子只能和喜欢的妹子结婚,大臣给出一个匹配表,每个王子都和一个妹子结婚,但是国王不满意,他要求大臣给他另一个表,每个王 ...
- POJ 1904 King's Quest 强连通分量+二分图增广判定
http://www.cnblogs.com/zxndgv/archive/2011/08/06/2129333.html 这位神说的很好 #include <iostream> #inc ...
- UVALive 5903 Piece it together(二分图匹配)
给你一个n*m的矩阵,每个点为'B'或'W'或'.'.然后你有一种碎片.碎片可以旋转,问可否用这种碎片精确覆盖矩阵.N,M<=500 WB <==碎片 W 题目一看,感觉是精确覆盖(最近 ...
- Poj 1904 King's Quest 强连通分量
题目链接: http://poj.org/problem?id=1904 题意: 有n个王子和n个公主,王子只能娶自己心仪的公主(一个王子可能会有多个心仪的公主),现已给出一个完美匹配,问每个王子都可 ...
- POJ - 1904 King's Quest (强连通)
题意:有N个王子,每个王子有任意个喜欢的妹子,巫师会给出一个方案:每个妹子都嫁给一个王子.但是国王希望知道:每个王子能在哪些妹子中择偶而不影响其他王子择偶. 分析:设王子为x部,妹子为y部,假设有匹配 ...
- POJ1904:King's Quest(强连通+思维)
King's Quest Time Limit: 15000MS Memory Limit: 65536K Total Submissions: 10352 Accepted: 3815 题目 ...
- poj1904 二分图匹配+强连通分量
http://poj.org/problem?id=1904 Description Once upon a time there lived a king and he had N sons. An ...
随机推荐
- Centos6与Centos7的区别
前言 centos7与6之间最大的差别就是初始化技术的不同,7采用的初始化技术是Systemd,并行的运行方式,除了这一点之外,服务启动.开机启动文件.网络命令方面等等,都说6有所不同.让我们先来了解 ...
- This module embeds Lua, via LuaJIT 2.0/2.1, into Nginx and by leveraging Nginx's subrequests, allows the integration of the powerful Lua threads (Lua coroutines) into the Nginx event model.
openresty/lua-nginx-module: Embed the Power of Lua into NGINX HTTP servers https://github.com/openre ...
- Django - ORM - 进阶
一.多表操作 创建模型 实例:我们来假定下面这些概念,字段和关系 作者模型:一个作者有姓名和年龄. 作者详细模型:把作者的详情放到详情表,包含生日,手机号,家庭住址等信息.作者详情模型和作者模型之间是 ...
- 构造HTTP请求Header实现“伪造来源IP”(转)
原文:http://zhangxugg-163-com.iteye.com/blog/1663687 构造 HTTP请求 Header 实现“伪造来源 IP ” 在阅读本文前,大家要有一个概念,在实现 ...
- spring登录验证拦截器和根据用户角色登录
大家都知道spring的用户登录拦截器,确实省去了程序员不少的精力,下面说说我在项目中使用的感受. 德安微信管理后台是管理多个微信帐号的平台,登录到平台的用户有三个角色,游客和微信帐号管理员.超级管理 ...
- 跟我学Makefile(三)
紧接着跟我学Makefile(二)继续学习:变量高级用法 (1)变量值的替换 :替换变量中的共有的部分,其格式是“$(var:a=b)”或是“${var:a=b}”,把变量“var”中所有以“a”字串 ...
- HTML5游戏开发系列教程9(译)
原文地址:http://www.script-tutorials.com/html5-game-development-lesson-9/ 今天我们将继续使用canvas来进行HTML5游戏开发系列的 ...
- Bootstrap单按钮的下拉菜单
简介 把任意一个按钮放入 .btn-group 中,然后加入适当的菜单标签,就可以让按钮作为菜单的触发器了. 插件依赖 按钮式下拉菜单依赖下拉菜单插件 ,因此需要将此插件包含在你所使用的 Bootst ...
- 商品的spu、sku及其之间的关系
今日来总结一下,电商系统中涉及到商品时必然会遇到的几个概念,SPU.SKU.单品等.彻底搞懂和明白了这几个概念对我们设计商品表是十分必要的前提条件. SPU:标准化产品单元 SPU = Standar ...
- 2015ACM/ICPC亚洲区沈阳站 Solution
A - Pattern String 留坑. B - Bazinga 题意:找一个最大的i,使得前i - 1个字符串中至少不是它的子串 思路:暴力找,如果有一个串已经符合条件,就不用往上更新 #inc ...