题目大意:有n个男孩和和n个女孩,已只每个男孩喜欢的女孩。一个男孩只能娶一个女孩、一个女孩只能嫁一个男孩并且男孩只娶自己喜欢的女孩,现在已知一种他们的结婚方案,现在要求找出每个男孩可以娶的女孩(娶完之后不能影响其他男孩结婚)。

题目分析:已知的结婚方案是一个完全匹配。从每个男孩出发向他喜欢的女孩连一条有向边,得到一张完全二分图,实际上这道题是让判断去掉哪一些边使图仍然完全匹配。设男生x1和女生y1是已知方案中要结婚的两个人,假如x1抛弃y1,选择了他也喜欢的y2结婚(也就是去掉边x1->y2),那么就得需要让原方案中y2的结婚对象x2选择一个他喜欢的女孩(不能再是y2)结婚,一直进行下去这个过程,y1终究会被选走(如果去边之后的图仍完全匹配)。这正是匈牙利算法的过程,但这样要超时。但是,如果将从y1出发连一条边到x1,那么这个过程所经过的所有点就构成了一个强连通分量。对于某个男孩,娶和他在同一强连通分量的任何一个女孩都不会影响其他男孩结婚。

代码如下:

# include<iostream>
# include<cstdio>
# include<stack>
# include<vector>
# include<cstring>
# include<iostream>
using namespace std;
# define REP(i,s,n) for(int i=s;i<n;++i)
# define CL(a,b) memset(a,b,sizeof(a))
# define CLL(a,b,n) fill(a,a+n,b) const int N=2005;
struct Edge
{
int to,nxt;
};
Edge e[N*100+N];
stack<int>S;
int scc_cnt,dfs_cnt,cnt,n,head[2*N],sccno[2*N];
int low[2*N],pre[2*N],G[N][N];
vector<int>ans; void add(int u,int v)
{
e[cnt].to=v;
e[cnt].nxt=head[u];
head[u]=cnt++;
} void dfs(int u)
{
S.push(u);
low[u]=pre[u]=++dfs_cnt;
for(int i=head[u];i!=-1;i=e[i].nxt){
int v=e[i].to;
if(!pre[v]){
dfs(v);
low[u]=min(low[u],low[v]);
}else if(!sccno[v])
low[u]=min(low[u],pre[v]);
}
if(low[u]==pre[u]){
++scc_cnt;
while(1){
int x=S.top(); S.pop();
sccno[x]=scc_cnt;
if(x==u) break;
}
}
} void findScc()
{
scc_cnt=dfs_cnt=0;
CL(pre,0);
CL(sccno,0);
REP(i,1,n+1) if(!pre[i]) dfs(i);
} int main()
{
while(~scanf("%d",&n))
{
int k,a;
cnt=0;
CL(G,0);
CL(head,-1);
REP(i,1,n+1){
scanf("%d",&k);
while(k--)
{
scanf("%d",&a);
add(i,a+n);
G[i][a]=1;
}
}
REP(i,1,n+1){
scanf("%d",&a);
add(a+n,i);
}
findScc();
REP(i,1,n+1){
ans.clear();
REP(j,n+1,2*n+1) if(G[i][j-n]&&sccno[i]==sccno[j])
ans.push_back(j-n);
printf("%d",ans.size());
REP(j,0,ans.size()) printf(" %d",ans[j]);
printf("\n");
}
}
return 0;
}

  

UVALive-2966 King's Quest(强连通+二分图匹配)的更多相关文章

  1. POJ1904 King's Quest(完备匹配可行边:强连通分量)

    题目大概就是说给一张二分图以及它的一个完备匹配,现在问X部的各个点可以与Y部那些些点匹配,使得X部其余点都能找到完备匹配. 枚举然后匹配,当然不行,会超时. 这题的解法是,在二分图基础上建一个有向图: ...

  2. POJ 1904 King's Quest ★(强连通分量:可行完美匹配边)

    题意 有n个女生和n个男生,给定一些关系表示男生喜欢女生(即两个人可以结婚),再给定一个初始匹配,表示这个男生和哪个女生结婚,初始匹配必定是合法的.求每个男生可以和哪几个女生可以结婚且能与所有人不发生 ...

  3. POJ 1904 King's Quest (强连通分量+完美匹配)

    <题目链接> 题目大意: 有n个王子,每个王子都有k个喜欢的妹子,每个王子只能和喜欢的妹子结婚,大臣给出一个匹配表,每个王子都和一个妹子结婚,但是国王不满意,他要求大臣给他另一个表,每个王 ...

  4. POJ 1904 King's Quest 强连通分量+二分图增广判定

    http://www.cnblogs.com/zxndgv/archive/2011/08/06/2129333.html 这位神说的很好 #include <iostream> #inc ...

  5. UVALive 5903 Piece it together(二分图匹配)

    给你一个n*m的矩阵,每个点为'B'或'W'或'.'.然后你有一种碎片.碎片可以旋转,问可否用这种碎片精确覆盖矩阵.N,M<=500 WB  <==碎片 W 题目一看,感觉是精确覆盖(最近 ...

  6. Poj 1904 King's Quest 强连通分量

    题目链接: http://poj.org/problem?id=1904 题意: 有n个王子和n个公主,王子只能娶自己心仪的公主(一个王子可能会有多个心仪的公主),现已给出一个完美匹配,问每个王子都可 ...

  7. POJ - 1904 King's Quest (强连通)

    题意:有N个王子,每个王子有任意个喜欢的妹子,巫师会给出一个方案:每个妹子都嫁给一个王子.但是国王希望知道:每个王子能在哪些妹子中择偶而不影响其他王子择偶. 分析:设王子为x部,妹子为y部,假设有匹配 ...

  8. POJ1904:King's Quest(强连通+思维)

    King's Quest Time Limit: 15000MS   Memory Limit: 65536K Total Submissions: 10352   Accepted: 3815 题目 ...

  9. poj1904 二分图匹配+强连通分量

    http://poj.org/problem?id=1904 Description Once upon a time there lived a king and he had N sons. An ...

随机推荐

  1. poj2411 Mondriaan's Dream【状压DP】

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20822   Accepted: 117 ...

  2. 无题II---hdu2236(二分,匈牙利)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2236 要求最大值与最小值的差值最小,是通过枚举边的下限和上限来完成 只需要用二分找一个区间,然后不断枚 ...

  3. mysql 数据操作 多表查询 子查询 带EXISTS关键字的子查询

    带EXISTS关键字的子查询 EXISTS关字键字表示存在. EXISTS 判断某个sql语句的有没有查到结果 有就返回真  true 否则返回假 False 如果条件成立 返回另外一条sql语句的返 ...

  4. vuejs和webpack项目(VueComponent)初尝试——瀑布流组件

    碎碎念:     好久不见,最近自己有些懈怠没更过多少博,主要原因之一是对自己学习方式的一些思考,翻看之前的博客多是记录学习笔记这反映出了自己对于前端还停留在学习-复习知识点的阶段压根没多少实践经验啊 ...

  5. python selenium 安装与 chromedriver安装

    安装 pip install selenium 安装完成之后运行脚本,如果没报错那ok.但是很不幸运,我报错啦.(本人使用ubuntu16.04,python2,or python3) 贴出我的报错: ...

  6. http之工作原理

    HTTP协议定义Web客户端如何从Web服务器请求Web页面,以及服务器如何把Web页面传送给客户端.HTTP协议采用了请求/响应模型.客户端向服务器发送一个请求报文,请求报文包含请求的方法.URL. ...

  7. zw版【转发·台湾nvp系列Delphi例程】HALCON SetIcon1

    zw版[转发·台湾nvp系列Delphi例程]HALCON SetIcon1 procedure TForm1.Button1Click(Sender: TObject);var img : HIma ...

  8. Mybatis 之动态代理

    使用Mybatis 开发Web 工程时,通过Mapper 动态代理机制,可以只编写接口以及方法的定义. 如下: 定义db.properties driver=oracle.jdbc.OracleDri ...

  9. iOS error: -34018

    一般报这个错误是由于操作keychain 报的错. 遇到该情况的情况: 1.是否打开权限 2.苹果自身的bug,传送门:https://stackoverflow.com/questions/2974 ...

  10. Python3.x:os.listdir和os.walk(获取路径方法)的区别

    Python3.x:os.listdir和os.walk(获取路径方法)的区别 1,os.listdir 使用情况:在一个目录下面只有文件,没有文件夹,这个时候可以使用os.listdir: 例如:d ...