from:http://www.cnblogs.com/kemaswill/archive/2013/04/01/2993583.html

在时间序列中,我们需要基于该时间序列当前已有的数据来预测其在之后的走势,三次指数平滑(Triple/Three Order Exponential Smoothing,Holt-Winters)算法可以很好的进行时间序列的预测。

时间序列数据一般有以下几种特点:1.趋势(Trend)  2. 季节性(Seasonality)。

趋势描述的是时间序列的整体走势,比如总体上升或者总体下降。下图所示的时间序列是总体上升的:

季节性描述的是数据的周期性波动,比如以年或者周为周期,如下图:

三次指数平滑算法可以对同时含有趋势和季节性的时间序列进行预测,该算法是基于一次指数平滑和二次指数平滑算法的。

一次指数平滑算法基于以下的递推关系:

si=αxi+(1-α)si-1 

其中α是平滑参数,si是之前i个数据的平滑值,取值为[0,1],α越接近1,平滑后的值越接近当前时间的数据值,数据越不平滑,α越接近0,平滑后的值越接近前i个数据的平滑值,数据越平滑,α的值通常可以多尝试几次以达到最佳效果。

一次指数平滑算法进行预测的公式为:xi+h=si,其中i为当前最后的一个数据记录的坐标,亦即预测的时间序列为一条直线,不能反映时间序列的趋势和季节性。

二次指数平滑保留了趋势的信息,使得预测的时间序列可以包含之前数据的趋势。二次指数平滑通过添加一个新的变量t来表示平滑后的趋势:

si=αxi+(1-α)(si-1+ti-1)

ti=ß(si-si-1)+(1-ß)ti-1

二次指数平滑的预测公式为  xi+h=si+hti  二次指数平滑的预测结果是一条斜的直线。

三次指数平滑在二次指数平滑的基础上保留了季节性的信息,使得其可以预测带有季节性的时间序列。三次指数平滑添加了一个新的参数p来表示平滑后的趋势。

三次指数平滑有累加和累乘两种方法,下面是累加的三次指数平滑

si=α(xi-pi-k)+(1-α)(si-1+ti-1)

ti=ß(si-si-1)+(1-ß)ti-1

pi=γ(xi-si)+(1-γ)pi-k  其中k为周期

累加三次指数平滑的预测公式为: xi+h=si+hti+pi-k+(h mod k)  注意:数据之魅P88此处有错误,根据Wikipedia修正。

下式为累乘的三次指数平滑:

si=αxi/pi-k+(1-α)(si-1+ti-1)

ti=ß(si-si-1)+(1-ß)ti-1

pi=γxi/si+(1-γ)pi-k  其中k为周期

累乘三次指数平滑的预测公式为: xi+h=(si+hti)pi-k+(h mod k)   注意:数据之魅P88此处有错误,根据Wikipedia修正。

  α,ß,γ的值都位于[0,1]之间,可以多试验几次以达到最佳效果。

  s,t,p初始值的选取对于算法整体的影响不是特别大,通常的取值为s0=x0,t0=x1-x0,累加时p=0,累乘时p=1.

  我们使用DataMarket的International Airline Passengers数据来测试累加和累乘三次指数平滑算法的性能,该数据记录的是每月的国际航线乘客数:

  下图为使用累加三次指数平滑进行预测的效果:其中红色为源时间序列,蓝色为预测的时间序列,α,ß,γ的取值为0.45,0.2,0.95:

下图为累乘三次指数平滑进行预测的效果,α,ß,γ的取值为0.4,0.05,0.9:

可以看到三次指数平滑算法可以很好的保存时间序列数据的趋势和季节性信息,在International Airline Passengers数据集上累乘平滑指数算法的效果更好。

参考文献:

[1]. 数据之魅:基于开源工具的数据分析

[2]. DataMarket: International Airline Passengers

[3]. Wikipedia: Exponential Smoothing

时间序列挖掘-预测算法-三次指数平滑法(Holt-Winters)——三次指数平滑算法可以很好的保存时间序列数据的趋势和季节性信息的更多相关文章

  1. R语言与数据分析之八:时间序列--霍尔特指数平滑法

    上篇我和小伙伴们分享了简单指数平滑法,简单指数平滑法仅仅能预測那些处于恒定水平和没有季节变动的时间序列,今天和大家分享非恒定水平即有增长或者减少趋势的.没有季节性可相加模型的时间序列预測算法---霍尔 ...

  2. R语言与数据分析之九:时间内序列--HoltWinters指数平滑法

    今天继续就指数平滑法中最复杂的一种时间序列:有增长或者减少趋势而且存在季节性波动的时间序列的预測算法即Holt-Winters和大家分享.这样的序列能够被分解为水平趋势部分.季节波动部分,因此这两个因 ...

  3. 【原创】基于SVM作短期时间序列的预测

    [面试思路拓展] 对时间序列进行预测的方法有很多, 但如果只有几周的数据,而没有很多线性的趋势.各种实际的背景该如何去预测时间序列? 或许可以尝试下利用SVM去预测时间序列,那么如何提取预测的特征呢? ...

  4. UEBA 学术界研究现状——用户行为异常检测思路:序列挖掘prefixspan,HMM,LSTM/CNN,SVM异常检测,聚类CURE算法

    论文 技术分析<关于网络分层信息泄漏点快速检测仿真> "1.基于动态阈值的泄露点快速检测方法,采样Mallat算法对网络分层信息的离散采样数据进行离散小波变换;利用滑动窗口对该尺 ...

  5. 数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例)

    数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例) 简介 scikit-learn 估计器 加载数据集 进行fit训练 设置参数 预处理 流水线 结尾 数据挖掘入门系 ...

  6. 转载:二次指数平滑法求预测值的Java代码

    原文地址: http://blog.csdn.net/qustmeng/article/details/52186378?locationNum=4&fps=1 import java.uti ...

  7. JVM探究 面试题 JVM的位置 三种JVM:HotSpot 新生区 Young/ New 养老区 Old 永久区 Perm 堆内存调优GC的算法有哪些?标记清除法,标记压缩,复制算法,引用计数法

    JVM探究 面试题: 请你弹弹你对JVM的理解?Java8虚拟机和之前的变化更新? 什么是OOM?什么是栈溢出StackOverFlowError?怎么分析 JVM的常用调优参数有哪些? 内存快照如何 ...

  8. 统计学习方法(三)——K近邻法

    /*先把标题给写了.这样就能经常提醒自己*/ 1. k近邻算法 k临近算法的过程,即对一个新的样本,找到特征空间中与其最近的k个样本,这k个样本多数属于某个类,就把这个新的样本也归为这个类. 算法  ...

  9. GC算法精解(五分钟让你彻底明白标记/清除算法)

    GC算法精解(五分钟让你彻底明白标记/清除算法) 相信不少猿友看到标题就认为LZ是标题党了,不过既然您已经被LZ忽悠进来了,那就好好的享受一顿算法大餐吧.不过LZ丑话说前面哦,这篇文章应该能让各位彻底 ...

随机推荐

  1. 括号匹配问题(区间dp)

    简单的检查括号是否配对正确使用的是栈模拟,这个不必再说,现在将这个问题改变一下:如果给出一个括号序列,问需要把他补全成合法最少需要多少步? 这是一个区间dp问题,我们可以利用区间dp来解决,直接看代码 ...

  2. as modern frameworks have warmed people to the idea of using builder-type patterns and anonymous inner classes for such things

    mybatis – MyBatis 3 | SQL语句构建器 http://www.mybatis.org/mybatis-3/zh/statement-builders.html SqlBuilde ...

  3. Git 进阶操作(一)

    1. 获取提交信息(commit) git show 1c002d(哈希值的前几位): 获取提交的信息; git show HEAD^: 显示HEAD的上级(parent)提交的信息; git sho ...

  4. python实现文件夹遍历

    python 中os.path模块用于操作文件或文件夹 os.path.exists(path) 判断文件路径是否存在 dir = "c:\windows"if os.path.e ...

  5. Winform 下使用WebBrowser的HTML编辑控件—WinHtmlControl 在win7 IE9下的问题

    问题是这样的,有一个需要用到富文本的地方,由于是winform的程序,而且程序是上一代老员工留下的,错误百出,现在要尽量修复,至少保证能正常使用,于是就开始一点点问题修复. 在win7 64位系统下出 ...

  6. webdriver js点击无法点击的元素

    原文地址https://blog.csdn.net/galen2016/article/details/56847545 [WebDriver]调用JavaScript 一.WebDriver 提供了 ...

  7. JavaScript Ajax上传文件miniupload.js

    用到jquery和layer.js (function ($) { $.fn.miniupload = function (options, callback) { var jqDom = $(thi ...

  8. centos7修改hostname

    [root@centos7 ~]$ hostnamectl set-hostname prd_web1 # 使用这个命令会立即生效且重启也生效 [root@centos7 ~]$ hostname # ...

  9. PHP Fatal error: Uncaught Error: Call to undefined function pcntl_fork().. 开启php pcntl扩展实现多进程

    在使用函数pcntl_fork()时报错  Fatal error: Uncaught Error: Call to undefined function pcntl_fork()....,原因是没有 ...

  10. Java集合转有类型的数组之toArray(T[] a)

    在java变成中慎用强制类型转换,尽量使用类自带的转换函数或泛型.先看一行代码 错误方法: String[] array= (String[]) list.toArray(); 如果list中存放的是 ...