RNA -seq
RNA -seq
RNA-seq目的、用处::可以帮助我们了解,各种比较条件下,所有基因的表达情况的差异。
比如:正常组织和肿瘤组织的之间的差异;检测药物治疗前后,基因表达的差异;检测发育过程中,不同的发育阶段,不同的组织之间的基因表达差异 等
在所有检测的差异类型中,最常用的一种检测就是:检测所有mRNA的表达量的差异。
还可以检测 RNA 的结构上的差异。例如:mRNA的剪接方式的差异,即“可变剪接”;还可以检测“融合基因”,同时还可以检测基因单点突变导致的SNP。
测序方法、步骤:人的细胞或组织,一般抽提到的总RNA当中,95%都是核糖体RNA。剩下的2%到3%是mRNA。还有2%到3%是Long non-coding RNA、或者tRNA、microRNA等
先把核糖体RNA先去掉。然后再进行建库测序。比如利用Poly(A)尾巴 抓出mRNA ,镁离子溶液打断,逆转录成cDNA ,再建库扩增,测序
表达量指标:目前最常用的是RPKM值,对基因表达量进行相对定量的一个指标。RPKM是 Reads Per Kilobase of exon model perMillion mapped reads。

除以这个外显子的长度,它的目的:是修正这个mRNA长度所引起的mRNA的Read数的偏差。
火山图:针对全转录组的分析,表达的是一次看到一个整体的样本(表达)差异的情况。
横轴表示某个基因的表达量是上升或下降。纵轴是表示这种差异的置信程度。这其中的每个点,就是两个样本当中同一个基因的mRNA表达量的变化。
聚类分析图:它是通过多个样本的全基因表达谱对比,来找到它们之间的相似性,和相近关系。
一张聚类分析的图,横轴是样本,纵轴是基因。
应用:我们可以分析疾病的亚型;还可以通过对多个基因在特定疾病当中的表达倾向性,来找出可能的、新的、诊断用的Biomark。
GO(gene ontology)分析:
GO主要描述基因的三个属性:
第一,是这个基因,它参与的生物过程
第二,是这个基因产物的功能
第三、是这个基因产物在细胞器内的空间定位
差异基因GO富集柱状图:可以直观的反映出在生物过程、细胞组分、和分子功能富集的差异基因的个数分布情况。 柱子越高,则表示这个亚类当中突变越多。
有向无环图,是差异基因GO富集分析的图形化展示方式,从上到下,它所定义的功能范围越来越小、越来越精准。 它的分支,表示包含关系。而这个圈圈的颜色越深呐,表示这个富集关系程度越高。
通路(Pathway)分析:在系统水平上完成生物的某一功能的基本单元、或者局部子网络。
散点图是KEGG富集分析结果的图形化展示方式。
在图中,KEGG富集程度通 Rich factor、Qvalue 和 富集到此通路上的基因个数 来衡量。
富集因子越大,则表示富集的程度越大。 qValue是校正之后的pValue,它越接近于0表示富集程度越显著。点面积越大呐,则富集的基因数越多。
RNA-seq中,可以测到mRNA上的各种结构上的变异,即RNA序列的变异。要求测序深度要更深。因为这样才能得到较完整的覆盖,更有把握判断 新的剪接点、一个断点、哪儿碱基发生了突变等。
结构变异分析:
可变剪接:一般一个人的组织样本当中,可以通过高通量测序,发现有5000个到20000个左右的可变剪接。
基因融合:融合基因的示意图,圆形 圆内弧线连接图
点突变(SNP):泡泡图,泡泡越大 突变频率越高,由大到小逆时针排列
RNA -seq的更多相关文章
- RNA seq 两种计算基因表达量方法
两种RNA seq的基因表达量计算方法: 1. RPKM:http://www.plob.org/2011/10/24/294.html 2. RSEM:这个是TCGAdata中使用的.RSEM据说比 ...
- RNA测序相对基因表达芯片有什么优势?
RNA测序相对基因表达芯片有什么优势? RNA-Seq和基因表达芯片相比,哪种方法更有优势?关键看适用不适用.那么RNA-Seq适用哪些研究方向?是否您的研究?来跟随本文了解一下RNA测序相对基因表达 ...
- featureCounts 软件说明
featuresCounts 软件用于定量,不仅可以支持gene的定量,也支持exon, gene bodies, genomic bins, chromsomal locations的定量: 官网 ...
- Advances in Single Cell Genomics to Study Brain Cell Types | 会议概览
单细胞在脑科学方面的应用 Session 1: Deciphering the Cellular Landscape of the Brain Using Single Cell Transcript ...
- xgene:WGS,突变与癌,RNA-seq,WES
人类全基因组测序06 SNP(single nucleotide polymorphism):有了10倍以上的覆盖深度以后,来确认SNP信息,就相当可靠了. 一个普通黄种人的基因组,与hg19这个参 ...
- 链终止法|边合成边测序|Bowtie|TopHat|Cufflinks|RPKM|FASTX-Toolkit|fastaQC|基因芯片|桥式扩增|
生物信息学 Sanger采用链终止法进行测序 带有荧光基团的ddXTP+其他四种普通的脱氧核苷酸放入同一个培养皿中,例如带有荧光基团的ddATP+普通的脱氧核苷酸A.T.C.G放入同一个培养皿,以此类 ...
- 08 Translating RNA into Protein
Problem The 20 commonly occurring amino acids are abbreviated by using 20 letters from the English a ...
- xgene:之ROC曲线、ctDNA、small-RNA seq、甲基化seq、单细胞DNA, mRNA
灵敏度高 == 假阴性率低,即漏检率低,即有病人却没有发现出来的概率低. 用于判断:有一部分人患有一种疾病,某种检验方法可以在人群中检出多少个病人来. 特异性高 == 假阳性率低,即错把健康判定为病人 ...
- BZOJ1798: [Ahoi2009]Seq 维护序列seq[线段树]
1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 5504 Solved: 1937[Submit ...
随机推荐
- CH1806 Matrix
题意 描述 给定一个M行N列的01矩阵(只包含数字0或1的矩阵),再执行Q次询问,每次询问给出一个A行B列的01矩阵,求该矩阵是否在原矩阵中出现过. 输入格式 第一行四个整数M,N,A,B. 接下来一 ...
- hasura graphql auth-webhook api 说明
hasura graphql 生产的使用是推荐使用webhook 进行角色访问控制的,官方同时提供了一个nodejs 的简单demo 代码 git clone https://github.com/h ...
- RabbitMq + Spring 实现ACK机制
概念性解读(Ack的灵活) 首先啊,有的人不是太理解这个Ack是什么,讲的接地气一点,其实就是一个通知,怎么说呢,当我监听消费者,正常情况下,不会出异常,但是如果是出现了异常,甚至是没有获取的异常,那 ...
- FastAdmin 学习线路 (2018-06-09 更新)
FastAdmin 学习线路 以下为常规线路,非常规可跳过. FastAdmin 学习线路 基础 HTML CSS DIV Javascript 基础 jQuery php 基础 对象 命名空间 进阶 ...
- 采用轻量ServiceMesh实现灰度发布的实践
软件总会有缺陷的,解决问题的同时往往会引入新的问题,关键是看这些问题是否在我们的控制范围内,“灰度发布”就是让问题受控的方法之一. 前言 我们的 CTO 经常说:“研发团队最首要的任务是提供稳定的服务 ...
- Navicat Premium解决连接mssql报错的问题
连接名:mssql_172.16.30.21:1433,每次打开查询时就报错. 重启,重转都不好使. 解决办法:去掉“:1433”,因为文件目录不支持“:”,所以一直报错.问题终于得到解决.
- [搬运] [贪心]NOIP2011 观光公交
推荐这篇题解:http://www.cnblogs.com/Blacko/archive/2013/10/18/3376597.html 只不过这篇题解有一些细节没有说清,但建议自己思考- Codes ...
- struts2学习(2)struts2核心知识
一.Struts2 get/set 自动获取/设置数据 根据上一章.中的源码继续. HelloWorldAction.java中private String name,自动获取/设置name: pac ...
- Monkey记录
1.查找包名方法 方法一: sdk里面的appt 以ES文件浏览器为例,命令行中切换到aapt.exe目录执行:aapt dump badging E:\apk\es3.apk 方法二: 查看data ...
- [转]JAVA 反射及使用
<%@page contentType="text/html; charset=GBK"%> <%@page import="java.security ...