Link of the Paper: https://arxiv.org/pdf/1409.3215.pdf

Main Points:

  1. Encoder-Decoder Model: Input sequence -> A vector of a fixed dimensionality -> Target sequence.
  2. A multilayered  LSTM: The LSTM did not have difficulty on long sentences. Deep LSTMs significantly outperformed shallow LSTMs.
  3. Reverse Input: Better performance. While the authors do not have a complete explanation to this phenomenon, they believe that it is caused by the introduction of many short term dependencies to the dataset. LSTMs trained on reversed source sentences did much better on long sentences than LSTMs trained on the raw source sentences, which suggests that reversing the input sentences results in LSTMs with better memory utilization.

Other Key Points:

  1. A significant limitation: Despite their flexibility and power, DNNs can only be applied to problems whose inputs and targets can be sensibly encoded with vectors of fixed dimensionality.

Paper Reading - Sequence to Sequence Learning with Neural Networks ( NIPS 2014 )的更多相关文章

  1. Paper Reading - Deep Captioning with Multimodal Recurrent Neural Networks ( m-RNN ) ( ICLR 2015 ) ★

    Link of the Paper: https://arxiv.org/pdf/1412.6632.pdf Main Points: The authors propose a multimodal ...

  2. 【论文笔记】Learning Convolutional Neural Networks for Graphs

    Learning Convolutional Neural Networks for Graphs 2018-01-17  21:41:57 [Introduction] 这篇 paper 是发表在 ...

  3. PP: Sequence to sequence learning with neural networks

    From google institution; 1. Before this, DNN cannot be used to map sequences to sequences. In this p ...

  4. 《MATLAB Deep Learning:With Machine Learning,Neural Networks and Artificial Intelligence》选记

    一.Training of a Single-Layer Neural Network 1 Delta Rule Consider a single-layer neural network, as ...

  5. [C1W4] Neural Networks and Deep Learning - Deep Neural Networks

    第四周:深层神经网络(Deep Neural Networks) 深层神经网络(Deep L-layer neural network) 目前为止我们学习了只有一个单独隐藏层的神经网络的正向传播和反向 ...

  6. [C1W3] Neural Networks and Deep Learning - Shallow neural networks

    第三周:浅层神经网络(Shallow neural networks) 神经网络概述(Neural Network Overview) 本周你将学习如何实现一个神经网络.在我们深入学习具体技术之前,我 ...

  7. 目标检测--Scalable Object Detection using Deep Neural Networks(CVPR 2014)

    Scalable Object Detection using Deep Neural Networks 作者: Dumitru Erhan, Christian Szegedy, Alexander ...

  8. Sequence to Sequence Learning with Neural Networks论文阅读

    论文下载 作者(三位Google大佬)一开始提出DNN的缺点,DNN不能用于将序列映射到序列.此论文以机器翻译为例,核心模型是长短期记忆神经网络(LSTM),首先通过一个多层的LSTM将输入的语言序列 ...

  9. Paper Reading——LEMNA:Explaining Deep Learning based Security Applications

    Motivation: The lack of transparency of the deep  learning models creates key barriers to establishi ...

随机推荐

  1. MVC 当中 [ValidateAntiForgeryToken] 的作用

     ValidateAntiForgeryToken 防止CSRF(跨网站请求伪造) 用途:防止CSRF(跨网站请求伪造). 用法:在View->Form表单中:<%:Html.AntiFo ...

  2. 【腾讯敏捷转型No.7】QQ邮箱如何通过敏捷成为行业第一

    前几篇文章讲到2006年的腾讯是如何开始敏捷转型的,接下来这篇文章,我将向大家讲述,腾讯开始敏捷转型之后,QQ邮箱是如何通过敏捷成为行业第一. 众所周知,张小龙是“微信之父”,对他熟悉的人,应该也知道 ...

  3. 详解Map集合体系及方法entrySet、keySet、values

    简单回顾Map集合: Map表示映射关系,以键值对的方式来保存数据.key和value一一对应.key是唯一的,不可重复,而value是可重复的,可以被多个key关联.虽然Map是放入两个数据,但是却 ...

  4. P1379 八数码难题

    #include<iostream> #include<bits/stdc++.h> using namespace std; #include<vector> u ...

  5. 偏前端-纯css,手写轮播-(焦点切换 和 自动轮播 只可选择一种,两者不可共存)

    现在我们一般都是在网上找个轮播插件,各种功能应有尽有,是吧!!~大家似乎已经生疏了手写是什么感觉.万一哪天想不起来,人家要手写,就尴尬了!~~跟我一起复习一下吧 不多说:效果图看一下: 高度不能是固定 ...

  6. 浅谈nodejs中HTTP模块应用

    这里给大家分享下后端人员如果利用nodejs对数据的一些处理情况  适用于初学者使用 大牛勿喷 给大家分享下主要后端思想部分代码,前端部分就不展示了 const http = require(&quo ...

  7. 学习tp5的第三天(模型)

    一.模型 1.定义基础模型 <?php namespace app\index\model; use think\Model; class User extends Model{ // 设置完整 ...

  8. Ubuntu18.04 设置wifi热点

    (1)在终端输入 命令:nm-connection-editor (2)然后点击wifi网络进行配置即可:

  9. 从零开始一个http服务器(六)-多路复用和压力测试

    从零开始一个http服务器(六)-多路复用和压力测试 代码地址 : https://github.com/flamedancer/cserver git checkout step6 运行: make ...

  10. 96. Partition List [easy]

    Description Given a linked list and a value x, partition it such that all nodes less than x come bef ...