Link of the Paper: https://arxiv.org/pdf/1409.3215.pdf

Main Points:

  1. Encoder-Decoder Model: Input sequence -> A vector of a fixed dimensionality -> Target sequence.
  2. A multilayered  LSTM: The LSTM did not have difficulty on long sentences. Deep LSTMs significantly outperformed shallow LSTMs.
  3. Reverse Input: Better performance. While the authors do not have a complete explanation to this phenomenon, they believe that it is caused by the introduction of many short term dependencies to the dataset. LSTMs trained on reversed source sentences did much better on long sentences than LSTMs trained on the raw source sentences, which suggests that reversing the input sentences results in LSTMs with better memory utilization.

Other Key Points:

  1. A significant limitation: Despite their flexibility and power, DNNs can only be applied to problems whose inputs and targets can be sensibly encoded with vectors of fixed dimensionality.

Paper Reading - Sequence to Sequence Learning with Neural Networks ( NIPS 2014 )的更多相关文章

  1. Paper Reading - Deep Captioning with Multimodal Recurrent Neural Networks ( m-RNN ) ( ICLR 2015 ) ★

    Link of the Paper: https://arxiv.org/pdf/1412.6632.pdf Main Points: The authors propose a multimodal ...

  2. 【论文笔记】Learning Convolutional Neural Networks for Graphs

    Learning Convolutional Neural Networks for Graphs 2018-01-17  21:41:57 [Introduction] 这篇 paper 是发表在 ...

  3. PP: Sequence to sequence learning with neural networks

    From google institution; 1. Before this, DNN cannot be used to map sequences to sequences. In this p ...

  4. 《MATLAB Deep Learning:With Machine Learning,Neural Networks and Artificial Intelligence》选记

    一.Training of a Single-Layer Neural Network 1 Delta Rule Consider a single-layer neural network, as ...

  5. [C1W4] Neural Networks and Deep Learning - Deep Neural Networks

    第四周:深层神经网络(Deep Neural Networks) 深层神经网络(Deep L-layer neural network) 目前为止我们学习了只有一个单独隐藏层的神经网络的正向传播和反向 ...

  6. [C1W3] Neural Networks and Deep Learning - Shallow neural networks

    第三周:浅层神经网络(Shallow neural networks) 神经网络概述(Neural Network Overview) 本周你将学习如何实现一个神经网络.在我们深入学习具体技术之前,我 ...

  7. 目标检测--Scalable Object Detection using Deep Neural Networks(CVPR 2014)

    Scalable Object Detection using Deep Neural Networks 作者: Dumitru Erhan, Christian Szegedy, Alexander ...

  8. Sequence to Sequence Learning with Neural Networks论文阅读

    论文下载 作者(三位Google大佬)一开始提出DNN的缺点,DNN不能用于将序列映射到序列.此论文以机器翻译为例,核心模型是长短期记忆神经网络(LSTM),首先通过一个多层的LSTM将输入的语言序列 ...

  9. Paper Reading——LEMNA:Explaining Deep Learning based Security Applications

    Motivation: The lack of transparency of the deep  learning models creates key barriers to establishi ...

随机推荐

  1. Android解析json数据

    Json数据 [{"code":"110000","sheng":"11","di":"0 ...

  2. 转发: Angular装饰器

    Angular中的装饰器是一个函数,它将元数据添加到类.类成员(属性.方法)和函数参数. 用法:要想应用装饰器,把它放在被装饰对象的上面或左边. Angular使用自己的一套装饰器来实现应用程序各部件 ...

  3. 【Python】01 - 常见用法随见随梳理

    1. range() 和 xrange()的区别 for x in range(5): print x for x in xrange(5): print x 这么看,range和xrange返回的值 ...

  4. Python爬虫——Scrapy整合Selenium案例分析(BOSS直聘)

    概述 本文主要介绍scrapy架构图.组建.工作流程,以及结合selenium boss直聘爬虫案例分析 架构图 组件 Scrapy 引擎(Engine) 引擎负责控制数据流在系统中所有组件中流动,并 ...

  5. Python学习:14.Python面向对象(一)

    一.面向对象简介 Python设计之初,就是一门面向对象的语言,在Python中一切皆对象,而且在Python中创建一个对象也很简单,今天我们就来学习一下Python的面向对象的知识. 二.两种编程方 ...

  6. C语言 编程练习22

    一.题目 1.编一个程序,输入x的值,按下列公式计算并输出y值: 2.已知数A与B,由键盘输入AB的值,交换它们的值,并输出. 3.给一个不多于5位的正整数,要求:一.求它是几位数,二.逆序打印出各位 ...

  7. 用html页面模板使用django完成个人博客

    1.进入虚拟环境: workon 虚拟环境名 2.找到我们的项目管理文件夹django,进入创建项目django-admin startproject blog 3.进入到我们的项目文件夹当中,创建我 ...

  8. Centos7最小化安装之工作站设置

    Centos7最小化安装之工作站设置 实测在Vultr的VPS上正常可用 在Vultr上怎么看桌面 两种解决方法: 使用VNC远程连接 直接使用Vultr的view console功能 我使用的是第二 ...

  9. Mac配置MySql

    MySql在Mac下的情况如下: 首先,我们进入MySql的官网下载MySql(直接点击即可),打开之后便是这样. 我们点击红色方框标记的内容,之后我等待下载完成. 下载完成之后,我们需要点点,注意一 ...

  10. 20155235 2006-2007-2 《Java程序设计》第1周学习总结

    20155235 2006-2007-2 <Java程序设计>第1周学习总结 教材学习内容总结 第二章 使用的JRE不同,对JAVA的执行有什么影响 第三章 字符串的用法在JAVA和C中有 ...