HDU1695:GCD(容斥原理+欧拉函数+质因数分解)好题
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695
题目解析:
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k.
题目又说a==c==1,所以就是求[1,b]与[1,d]中gcd等于k的个数,因为若gcd(x,y)==z,那么gcd(x/z,y/z)==1,又因为不是z的倍数的肯定不是,所以不是z的倍数的可以直接去掉,所以只要将b和d除以k,然后就转化成了求两个范围中互质的对数了。即求[1,b/k],与[1,d/k]中互质的数目,让b<d,又因为 (x=5, y=7) and (x=7, y=5) are considered to be the same.
所以先求[1,b/k]中互质的数目,即phi[1]+phi[2]+phi[3].....+phi[b/k](其中phi[i]为i的欧拉函数值),再从区间[b/k+1,d/k]枚举与区间[1,b/k]中互质的数目。其中求与区间[1,b/k]中互质的数目可以通过容斥原理求得与区间[1,b/k]中不互质的数目,相减便可以求得结果。这题折腾了一中午,一直TLE,代码在后面贴了,之后看大神的博客知道了哪里超时的原因,每个数的质因子可以在打表求欧拉函数的时候顺便求出来,一种哈希的思想,这样就不用在枚举的时候每一个数在求一遍他的质因子了,好题!
代码如下:(608ms)
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <math.h>
using namespace std;
typedef __int64 ll;
ll sum,phi[];
int cnt[][],f[],a,b,c,d,x;
void init()
{
memset(f,,sizeof(f));
for(int i=; i<=; i++)
{
phi[i]=;
f[i]=;
}
phi[]=;
for(int i=; i<=; i++)
{
if(!phi[i])
{
for(ll j=i; j<=; j+=i)
{
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-);
cnt[j][f[j]++]=i;//算是哈希吧,很精辟啊,这种写法要学习
}
}
phi[i]+=phi[i-];
}
}
ll gcd(ll A,ll B)
{
return B==?A:gcd(B,A%B);
}
void dfs(ll now,ll num,ll lcm,ll &coun,int key)
{
lcm=cnt[key][now]/gcd(cnt[key][now],lcm)*lcm;
if(num&)
{
coun+=b/lcm;
}
else
{
coun-=b/lcm;
}
for(ll i=now+; i<f[key]; i++)
dfs(i,num+,lcm,coun,key);
}
int main()
{
int T,K=;
init();
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&x);
if(x == || x > b || x > d)
{
printf("Case %d: 0\n",++K);
continue;
}
b/=x;
d/=x;
sum=;
if(b>d) swap(b,d);
sum+=phi[b];
for(int i=b+; i<=d; i++)
{
ll coun=;
for(int j=; j<f[i]; j++)
{
dfs(j,,cnt[i][j],coun,i);
}
sum+=(b-coun);
}
printf("Case %d: %I64d\n",++K,sum);
}
return ;
}
TLE的:(TLE了一中午 3000ms++)
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <math.h>
using namespace std;
typedef __int64 ll;
ll a,b,c,d,x,sum,top,cnt[],we;//********
int phi[],su[],prime[];
void init()
{
we=;
prime[we++]=;
su[]=su[]=;
su[]=;
for(int i=; i<; i++)
if(i%==) su[i]=;
else su[i]=;
double t=sqrt(*1.0);
for(ll i=; i<=t; i++)
{
if(su[i])
{
for(ll j=i*i; j<; j=j+i)
{
su[j]=;
}
}
}
for(ll i=; i<=; i++)
{
if(su[i]) prime[we++]=i;
}
memset(phi,,sizeof(phi));
phi[]=;
for(ll i=; i<=; i++)
{
if(!phi[i])
{
for(ll j=i; j<=; j+=i)
{
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
}
}
ll gcd(ll A,ll B)
{
return B==?A:gcd(B,A%B);
}
void dfs(ll now,ll num,ll lcm,ll &coun)
{
lcm=cnt[now]/gcd(cnt[now],lcm)*lcm;
if(num&)
{
coun+=b/lcm;
//printf("hsum======%I64d\n",sum);
}
else
{
coun-=b/lcm;
}
for(ll i=now+; i<top; i++)
dfs(i,num+,lcm,coun);
}
void cal(ll key,ll &coun)
{
top=;
ll KK=;
for(ll i=prime[]; i<=key; i=prime[++KK])
{
if(key%i==)
{
cnt[top++]=i;
key/=i;
while(key%i==)
key/=i;
}
}
if(key!=)
{
cnt[top++]=key;
}
for(ll i=; i<top; i++)
{
dfs(i,,cnt[i],coun);
}
}
int main()
{
int T,K=;
init();
scanf("%d",&T);
while(T--)
{
scanf("%I64d%I64d%I64d%I64d%I64d",&a,&b,&c,&d,&x);
if(x == || x > b || x > d)
{
printf("Case %d: 0\n",++K);
continue;
} b/=x;
d/=x;
sum=;
if(b>d) swap(b,d);
//cout<<"b=="<<b<<" "<<"d=="<<d<<endl;
for(int i=; i<=b; i++)
{
sum+=phi[i];
}
//cout<<"sumsss=="<<sum<<endl;
for(ll i=b+; i<=d; i++)
{
if(su[i])
{
sum+=b;
continue;
}
ll coun=;
cal(i,coun);
sum+=(b-coun);
}
printf("Case %d: %I64d\n",++K,sum);
}
return ;
}
HDU1695:GCD(容斥原理+欧拉函数+质因数分解)好题的更多相关文章
- T^TOJ - 1251 - 。◕‿◕。TMD - 欧拉函数 - 质因数分解
http://www.fjutacm.com/Problem.jsp?pid=1251 想了很久,一开始居然还直接枚举因子d,计算重复了. 首先你要找与n的最大公因子大于m的x的个数. \[\sum\ ...
- HDU1695 GCD (欧拉函数+容斥原理)
F - GCD Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Stat ...
- HDU 1695 GCD (容斥原理+欧拉函数)
题目链接 题意 : 从[a,b]中找一个x,[c,d]中找一个y,要求GCD(x,y)= k.求满足这样条件的(x,y)的对数.(3,5)和(5,3)视为一组样例 . 思路 :要求满足GCD(x,y) ...
- HDU 1695 GCD(欧拉函数+容斥原理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...
- hdu 1695 GCD (欧拉函数、容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- HDU 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- hdu 1695 GCD(欧拉函数+容斥)
Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...
- HDU2588:GCD(欧拉函数的应用)
题目链接:传送门 题目需求:Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.(2& ...
- hdu2588 GCD (欧拉函数)
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数. (文末有题) 知 ...
随机推荐
- windows,cmd中进行盘符的切换
需求描述: 在工作中,有的时候需要在cmd中进行盘符的切换,以前总有些时候 通过cd来切,就是切换不过去,每次都要进行百度查询,所以,这次就记录下, 留着以后再用. 操作过程: 1.通过win+r-& ...
- Xshell通过ssh方式连接Linux服务器,通过Xftp进行文件传输
准备工作: 一.Linux服务器一台,并配置ssh(本文以腾讯云服务器为例). 1.生成秘钥 打开腾讯云控制台,依次选择:总览->云服务器->SSH秘钥 点击创建秘钥,输入秘钥名称,点击确 ...
- HDU2717BFS
/* WA了12发简直不能忍! . 题意非常简单.从正整数a变为b有三种方法: +1,-1.*2 特殊情况一:a与b相等不须要搜索 特殊情况二:a>b时.结果必定是a-b不需搜 特殊情况三:比較 ...
- Python 字符串处理(转)
转自:黄聪:Python 字符串操作(替换.删除.截取.复制.连接.比较.查找.包含.大小写转换.分割等) http://www.cnblogs.com/huangcong/archive/2011/ ...
- Can't connect to local MySQL server through socket '/var/lib/mysql/mysql.sock'
MySQL在linux安装之后,连接到服务,报了下面的错误: ERROR 2002 (HY000): Can't connect to local MySQL server through socke ...
- /etc/sysctl.conf
/etc/sysctl.conf 用于控制内核相关的配置参数,而且它的内容全部是对应于 /proc/sys/ 这个目录的子目录及文件 [root@localhost ~]$ ll /proc/sys ...
- VS2015编译OpenSSL1.0.2源码
更多详细信息http://blog.csdn.net/YAOJINGKAO/article/details/53041165?locationNum=10&fps=1 1.下载安装编译必须的A ...
- EditPlus详解
如何让EditPlus支持LUA教程是本文要介绍的内容,这次主要介绍一下学习Lua之前的准备工作.关于在EditPlus中实现lua的安装,具体内容来看本文详解. (1) 下载Lua安装包,最新版本是 ...
- CRUX下实现进程隐藏(2)
前面我们介绍了如何修改/proc目录读取函数的方法实现进程隐藏.这篇博文将介绍另一种方法—— 劫持系统调用实现进程隐藏. 其基本原理是:加载一个内核模块(LKM),通过劫持系统调用sys_getden ...
- C# 计算当前时间距离今晚00:00:00还有多少分多少秒
.net 计算当前时间距离今晚00:00:00还有多少分多少秒 string dateDiff = null;//获取当前时间 DateTime DateTime1 = DateTime.Now; / ...