<题目链接>

题意:

先是给出几组数据,每组数据第一行是总被抓概率p(最后求得的总概率必须小于他,否则被抓),然后是想抢的银行数n。然后n行,每行分别是该银行能抢的钱数m[i]和被抓的概率p[i],求最大逃跑概率。被抓的概率越大,逃跑概率越小。

解题思路:

由于被抓的概率不好求,所以我们将其转化为逃跑概率,又因为逃跑概率不是简单的相加,所以这里将强的钱数作为01背包的体积,逃跑概率作为价值,求得在一定抢钱数下,最大的逃跑概率。

#include <bits/stdc++.h>
using namespace std; int n,m[];
double p0,p[],dp[int(1e4+)]; int main(){
int T;scanf("%d",&T);while(T--){
int sum=;
scanf("%lf%d",&p0,&n);
for(int i=;i<=n;i++)
scanf("%d%lf",&m[i],&p[i]),sum+=m[i];
memset(dp,,sizeof(dp));
dp[]=; //抢钱数为0,逃跑概率为1
for(int i=;i<=n;i++)
for(int j=sum;j>=m[i];j--)
dp[j]=max(dp[j],dp[j-m[i]]*(-p[i])); //得到抢一定数量钱的最大逃跑概率
for(int i=sum;i>=;i--){
if(dp[i]>(-p0)){ printf("%d\n",i); break; } //输出能够成功逃跑的最大抢钱数
}
}
}

HDU 2955_Robberies 小偷抢银行【01背包】的更多相关文章

  1. 2955 ACM 杭电 抢银行 01背包 乘法

    题意: 强盗抢银行,在不被抓住的情况下,想尽量多的偷点钱.已知各个银行的金钱和被抓的概率,以及强盗能容忍的最大不被抓的概率(小于等于该概率才能不被抓),求最多能抢到钱? 并不是简单的01背包问题? 1 ...

  2. HDU 5234 Happy birthday --- 三维01背包

    HDU 5234 题目大意:给定n,m,k,以及n*m(n行m列)个数,k为背包容量,从(1,1)开始只能往下走或往右走,求到达(m,n)时能获得的最大价值 解题思路:dp[i][j][k]表示在位置 ...

  3. HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解)

    HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解) 题意分析 要先排序,在做01背包,否则不满足无后效性,为什么呢? 等我理解了再补上. 代码总览 #in ...

  4. HDOJ(HDU).2546 饭卡(DP 01背包)

    HDOJ(HDU).2546 饭卡(DP 01背包) 题意分析 首先要对钱数小于5的时候特别处理,直接输出0.若钱数大于5,所有菜按价格排序,背包容量为钱数-5,对除去价格最贵的所有菜做01背包.因为 ...

  5. HDOJ(HDU).2602 Bone Collector (DP 01背包)

    HDOJ(HDU).2602 Bone Collector (DP 01背包) 题意分析 01背包的裸题 #include <iostream> #include <cstdio&g ...

  6. HDU 1864 最大报销额 0-1背包

    HDU 1864 最大报销额 0-1背包 题意 现有一笔经费可以报销一定额度的发票.允许报销的发票类型包括买图书(A类).文具(B类).差旅(C类),要求每张发票的总额不得超过1000元,每张发票上, ...

  7. hdu 2639 第k大01背包

    求每个状态里的k优解,然后合并 /* HDU 2639 求01背包的第k大解. 合并两个有序序列 */ #include<stdio.h> #include<iostream> ...

  8. 【HDU 3810】 Magina (01背包,优先队列优化,并查集)

    Magina Problem Description Magina, also known as Anti-Mage, is a very cool hero in DotA (Defense of ...

  9. HDU 2639 Bone Collector II(01背包变形【第K大最优解】)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

随机推荐

  1. freemark简单事例

    工作准备:开发环境myeclipse freemarker.jar(需要下载) 首先引入freemarker.jar包.然后,,,,直接贴代码: 1.创建一个FreemarkerUtil类: pack ...

  2. android AysncTask使用

    1.继承AysncTask类 例子: class downloadTask extends AsyncTask<Void,Integer,Boolean> 第一个参数是传入的参数 第二个参 ...

  3. Shell高级编程学习笔记(基础篇)

    目录 1.shell脚本的执行方法  2.shell的变量类型  3.shell特殊变量 4.变量子串的常用操作  5.批量修改文件名实践   6.变量替换 7.在shell中计算字符串长度的方法  ...

  4. 一份通过IPC$和lpk.dll感染方式的病毒分析报告

    样本来自52pojie论坛,从事过两年渗透开始学病毒分析后看到IPC$真是再熟悉不过. 1.样本概况 1.1 样本信息 病毒名称:3601.exe MD5值:96043b8dcc7a977b16a28 ...

  5. opencv入门指南(转载)

    转载链接:http://blog.csdn.net/morewindows/article/details/8426318 网上的总结的一些用openncv的库来做的事: 下面列出OpenCV入门指南 ...

  6. dup,dup2函数【转】

    转自:http://eriol.iteye.com/blog/1180624 转自:http://www.cnblogs.com/jht/archive/2006/04/04/366086.html ...

  7. Python3学习笔记21-实例属性和类属性

    由于Python是动态语言,根据类创建的实例可以任意绑定属性. 给实例绑定属性的方法是通过实例变量,或者通过self变量: class Student(object): def __init__(se ...

  8. @RequestBody,@ResponseBody

    @RequestBody 作用: i) 该注解用于读取Request请求的body部分数据,使用系统默认配置的HttpMessageConverter进行解析,然后把相应的数据绑定到要返回的对象上: ...

  9. saltstack自动化运维系列⑥SaltStack实践安装配置HAproxy的Keepalived

    saltstack自动化运维系列⑥SaltStack实践安装配置HAproxy的Keepalived 安装配置Keepalived 1.编写功能模块 #创建keepalived目录# mkdir -p ...

  10. windows安装配置git和Tortoisegit

    git github  gitlab  Tortoisegit 的概念自行百度 1. 安装git 2. 安装小乌龟:Tortoisegit  和中文包 3. 配置 4. 使用 参考: 目录 安装及配置 ...