<Impala><Overview><UDF>
Overview
- Apache Impala (incubating) is the open source, native analytic database for apache Hadoop.
Features
- Do BI-style Queries on Hadoop:
- low latency and high concurrency for BI/analytic queries on Hadoop(not delivered by batch frameworks such as Apache Hive).
- scales linearly, even in multitenant environments.
- Unify ur Infrasturecture: Utilize the same file and data formats and metadata, security, and resource management frameworks as your Hadoop deployment—no redundant infrastructure or data conversion/duplication.
- Implement Quickly: supports SQL
- Count on Enterprise-class Security
- Retain Freedom from Lock-in: open-source
- Expand the Hadoop User-verse
Architecuture
- Circumvents MapReduce to avoid latency, directly access the data through a specialized distributed query engine that is very similar to those found in commercial parallel RDBMSs.
- Some advantages:
- Thx to local processing on data nodes, network bottlenecks are avoided.
- A signle, open, and unified metadata store can be utilized.
- Costly data format conversion is unnecessary and thus no overhead is incurred.
- All data is immediately query-able, with no delays for ETL.
- All hardware is utilized for Impala queries as well as for MR.
- Only a single machine pool is needed to scale.
Documentation
... skip
Impala User-Defined Functions(UDFs)
- UDF let you code ur own application logic for processing column values during an Impala query.
UDFS Concepts
- U can code either scalar functions for producing results one row at a time.
- Or more complex aggregate functions for doing analysis across.
UDFs and UDAFs
- The most general kind of udf takes single input value and produces a single output value. When used in a query, it is called once for each row in the result set. eg:
select customer_name, is_frequent_customer(customer_id) from customers;
select obfuscate(sensitive_column) from sensitive_data; - A user-defined aggergate function(UDAF) accepts a group of values and returns a single value. U can use UDAFs to summarize and condense sets of rows, in the same style as the built-in COUNT, MAX(), SUM(), and AVG() functions. When called in a query that uses the GROUP BY clause, the function is called once for each combination of GROUP BY values. eg:
-- Evaluates multiple rows but returns a single value
select closest_restaurant(latitude, longitude) from places; -- Evaluates batches of rows and returns a separate value for each batch.
select most_profitable_locartion(store_id, sales, expenses, tax_rate, depreciation) from franchise_data group by year; - Currently, Impala does not support other categories of udf, such as user-defined table functions(UDTFs) or window functions.
Native Impala UDFs
- Impala supports UDFs written in C++, in addition to supporting existing Hive UDFs written in Java.
- Where practical, use C++ UDFs because the compiled native code can yield higher performance, with UDF execution time often 10x faster for a C++ UDF than the equivalent Java UDF.
Using Hive UDFs with Impala
- Impala can run Java-based user-defined functions (UDFs), originally written for Hive, with no changes, subject to the following conditions:
- The parameter and return value must all use scalar data types supported by Impala. That's to say, complex or nested types are not supported.
- Currently, Hive UDFs that accept or return the TIMESTAMP type are not supported.
- Hive UDAFs and UDTFs are not supported.
- Typically, a Java UDF will execute several times slower in Impala than the equivalent native UDF written in C++.
- What to do next?
- write ur udf
- upload the jar to a hdfs path(where impala can read)
- for each Java-based UDF that u want to call through Impala, issue a CREATE FUNCTION statement, with a LOCATION clause containing the full HDFS path or the JAR file, and a SYMBOL clause with the fully qualified name of the class, using dots as separators and without the .class extension. eg:
create function my_neg(bigint)
returns bigint location '/user/hive/udfs/hive.jar'
symbol = 'org.apache.hadoop.hive.ql.udf.UDFOPNegative'; - call the function from ur queries, passing arguments of the correct type to match the function signature.
FYI
<Impala><Overview><UDF>的更多相关文章
- 简单物联网:外网访问内网路由器下树莓派Flask服务器
最近做一个小东西,大概过程就是想在教室,宿舍控制实验室的一些设备. 已经在树莓上搭了一个轻量的flask服务器,在实验室的路由器下,任何设备都是可以访问的:但是有一些限制条件,比如我想在宿舍控制我种花 ...
- 利用ssh反向代理以及autossh实现从外网连接内网服务器
前言 最近遇到这样一个问题,我在实验室架设了一台服务器,给师弟或者小伙伴练习Linux用,然后平时在实验室这边直接连接是没有问题的,都是内网嘛.但是回到宿舍问题出来了,使用校园网的童鞋还是能连接上,使 ...
- 外网访问内网Docker容器
外网访问内网Docker容器 本地安装了Docker容器,只能在局域网内访问,怎样从外网也能访问本地Docker容器? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Docker容器 ...
- 外网访问内网SpringBoot
外网访问内网SpringBoot 本地安装了SpringBoot,只能在局域网内访问,怎样从外网也能访问本地SpringBoot? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装Java 1 ...
- 外网访问内网Elasticsearch WEB
外网访问内网Elasticsearch WEB 本地安装了Elasticsearch,只能在局域网内访问其WEB,怎样从外网也能访问本地Elasticsearch? 本文将介绍具体的实现步骤. 1. ...
- 怎样从外网访问内网Rails
外网访问内网Rails 本地安装了Rails,只能在局域网内访问,怎样从外网也能访问本地Rails? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Rails 默认安装的Rails端口 ...
- 怎样从外网访问内网Memcached数据库
外网访问内网Memcached数据库 本地安装了Memcached数据库,只能在局域网内访问,怎样从外网也能访问本地Memcached数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装 ...
- 怎样从外网访问内网CouchDB数据库
外网访问内网CouchDB数据库 本地安装了CouchDB数据库,只能在局域网内访问,怎样从外网也能访问本地CouchDB数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Cou ...
- 怎样从外网访问内网DB2数据库
外网访问内网DB2数据库 本地安装了DB2数据库,只能在局域网内访问,怎样从外网也能访问本地DB2数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动DB2数据库 默认安装的DB2 ...
- 怎样从外网访问内网OpenLDAP数据库
外网访问内网OpenLDAP数据库 本地安装了OpenLDAP数据库,只能在局域网内访问,怎样从外网也能访问本地OpenLDAP数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动 ...
随机推荐
- yii框架中使用gii的用法
首先在config文件中的 main-local.php中添加一句 'allowedIPs' => ['*'],如下图所示:
- 精华 selenium_webdriver(python)调用js脚本
#coding=utf-8 from selenium import webdriver import time driver = webdriver.Firefox() driver.get(&qu ...
- ubuntu Sublime Text 2编辑器安装
官网下载http://www.sublimetext.com/2 选择合适的包下载回来的格式是.tar.bz2格式,需要进行解压. 1,解压:tar -xvf Sublime\ Text\ 2.0.2 ...
- 使用saltui实现图片预览查看
项目是基于dingyou-dingtalk-mobile脚手架的一个微应用,这个脚手架使用的UI是antd-mobile,它提供了一个图片上传的组件,但是未提供图片预览的组件,在网上找了不少如何在re ...
- 51nod-1181-两次筛法
1181 质数中的质数(质数筛法) 题目来源: Sgu 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 如果一个质数,在质数列表中的编号也是质数,那么就 ...
- poj-2888-矩阵+polya
Magic Bracelet Time Limit: 2000MS Memory Limit: 131072K Total Submissions: 6195 Accepted: 1969 D ...
- WDA基础十四:ALV字段属性配置表
ALV配置表管理 一.字段属性配置表 对于可编辑的ALV不用这个,尽可能多的设置一些控制: 单元格类型:默认A,特殊选择 ZLYE_TYPE E A 1 ...
- JS 设置盒子div 跳转
方式一 window.location.href=”url”; 在当前窗口跳转 方式二 window.open(‘url’) 在新窗口跳转 window.open(‘url’,’_self’) 在当前 ...
- 一、J2EE
一.HTTP协议中的响应代码 响应代码从1xx--5xx一共有41中.常见的 404:表示访问的页面不存在.这表示一个浏览器的错误,就是服务端没有提供这个服务,你却去访问.这个锅要算在浏览器头上,而不 ...
- CompareTo 基于的排序算法
CompareTo 基于的排序算法(高级排序) 这个是今天学习MapReduce时发现的,自定义类后实现了WritableComparable<>接口后实现了接口中的compareTo方法 ...