A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK

文章地址:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8127792

写在前面:各位朋友好,这是本人第一篇博客,为了不打击自己,决定从一篇易懂的paper的阅读笔记开始写起,写的不好不对的地方望各位朋友不吝赐教,在此先行谢过。

1、文章简介:

这是一篇运用卷积神经网络CNN高光谱波段选择的论文,摘要中称此文是第一篇把CNN用在波段选择的工作,另外据我个人理解这是一篇wrapper特征选择方式的工作。

① 流程简介:“在本文中,我们首先将CNN引入频段选择。 我们使用1D-CNN训练高光谱带标记数据来获得训练有素的模型,然后,我们使用该模型来测试各种波段组合。 在测试结果中,我们选择具有最高精度的波段作为选定波段,并验证我们的方法选择的波段对土地利用或土地覆盖分类的影响。

② 主要贡献:“1、我们使用深度卷积神经网络更好地选择波段,是这个问题的第一个深度学习解决方案。 我们证明了深度学习在高光谱带选择困难的挑战中是有用的,这得益于深度CNN的高级特征提取能力。2、在频带组合测试阶段,我们使用频段零填充技术来解决测试频带数量少于训练频带的问题。

2、方法简介:

左侧流程图画的挺清晰的:

以一个像素点的全波段作为输入,经过两组卷积核为30*(3*1或5*1)的1-D CNN、RELU激活函数和步长为k2的Max-Pooling,最终接一层全连接层,然后连接softmax分类层。

文中还计算了参数量,然而可惜的是,没有给出具体的卷积核还有pooling层的步长。

右侧是算法流程

1、在上述网络搭建好后,利用每个训练集像素的全波段训练整个网络。

2、假设我们选取m个波段(m<波段总数),就所有可能的m个波段组合,记为BCn(n是所有可能集合数目)。

3、测试一种组合BCi的测试精度,具体做法是将测试数据中 所在的BCi波段集合中的波段保留原值,其余波段数值置零。

4、测试每一种组合的精度,选取精度最好的波段组合及其精度,作为数目为m的最优波段组合及精度。

3、实验结果和分析:

实验数据是最经典的Indian Pines高光谱数据,去除干扰波段剩余196,分类本该十六类,该文选取的是其中十类,如下图。

实验结果如下图。

选择波段示意如下图。

文中略微解释了一下实验结果:“Because the bands we selected are mainly used for the classification of the land cover/use itself, and not focus on the differences between objects, the bands selected need to represent the features of the land cover/use. (因为我们选择的波段主要用于土地覆盖/使用本身的分类,而不是关注物体之间的差异,所选择的波段需要代表土地覆盖/使用的特征。)”

 

 

A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK文章笔记的更多相关文章

  1. HYPERSPECTRAL IMAGE CLASSIFICATION USING TWOCHANNEL DEEP CONVOLUTIONAL NEURAL NETWORK阅读笔记

    HYPERSPECTRAL IMAGE CLASSIFICATION USING TWOCHANNEL  DEEP  CONVOLUTIONAL NEURAL NETWORK 论文地址:https:/ ...

  2. 《Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks》论文笔记

    论文题目<Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Ne ...

  3. 论文翻译:2021_A New Real-Time Noise Suppression Algorithm for Far-Field Speech Communication Based on Recurrent Neural Network

    论文地址:一种新的基于循环神经网络的远场语音通信实时噪声抑制算法 引用格式:Chen B, Zhou Y, Ma Y, et al. A New Real-Time Noise Suppression ...

  4. 论文翻译:2020_RESIDUAL ACOUSTIC ECHO SUPPRESSION BASED ON EFFICIENT MULTI-TASK CONVOLUTIONAL NEURAL NETWORK

    论文翻译:https://arxiv.53yu.com/abs/2009.13931 基于高效多任务卷积神经网络的残余回声抑制 摘要 在语音通信系统中,回声会降低用户体验,需要对其进行彻底抑制.提出了 ...

  5. 论文翻译:2020_Acoustic Echo Cancellation Based on Recurrent Neural Network

    论文地址:https://ieeexplore.ieee.org/abstract/document/9306224 基于RNN的回声消除 摘要 本文提出了一种基于深度学习的语音分离技术的回声消除方法 ...

  6. 【HEVC帧间预测论文】P1.6 A Fast HEVC Inter CU Selection Method Based on Pyramid Motion Divergence

    A Fast HEVC Inter CU Selection Method Based on Pyramid Motion Divergence <HEVC标准介绍.HEVC帧间预测论文笔记&g ...

  7. 论文翻译:2019_Deep Neural Network Based Regression Approach for A coustic Echo Cancellation

    论文地址:https://dl.acm.org/doi/abs/10.1145/3330393.3330399 基于深度神经网络的回声消除回归方法 摘要 声学回声消除器(AEC)的目的是消除近端传声器 ...

  8. A Deep Neural Network Approach To Speech Bandwidth Expansion

    题名:一种用于语音带宽扩展的深度神经网络方法 作者:Kehuang Li:Chin-Hui Lee 2015年出来的 摘要 本文提出了一种基于深度神经网络(DNN)的语音带宽扩展(BWE)方法.利用对 ...

  9. 论文笔记:ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks

    ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05  11:13:05   ...

随机推荐

  1. Prometheus监控学习笔记之PromQL操作符

    0x00 二元运算符 Prometheus 的查询语言支持基本的逻辑运算和算术运算.对于两个瞬时向量, 匹配行为可以被改变. 算术二元运算符 在 Prometheus 系统中支持下面的二元算术运算符: ...

  2. php打乱数组二维数组、多维数组

    //这个是针对二维数组的!下面针对多维数组的乱序方法<?php function shuffle_assoc($list) { if (!is_array($list)) return $lis ...

  3. DATAPUMP PERFORMANCE EXPDP IS VERY SLOW 10.2.0.4 TO 11.2.0.2

    APPLIES TO: Oracle® Database - Enterprise Edition - Version 10.2.0.4 to 11.2.0.2 [Release 10.2 to 11 ...

  4. C++max的使用方法

    #include <iostream> //#include <algorithm>//std::min std::max #include <stdint.h> ...

  5. fedora23安装搜狗輸入法?

    1, 安裝方法, 是通過下載 repo文件, 添加repo文件, 然後通過dnf啦安裝的. repo文件地址是: fedora 的中文社區: https://www.fdzh.org/ fdzh: 就 ...

  6. github帐户和仓库的创建

    sign up is registration and sign in is logging in for "in" is to enter an existing account ...

  7. PKM(个人知识管理)类软件收集(偶尔更新列表)

    evernote(印象笔记) Wiz 有道云 麦库 leanote GoogleKeep OneNote SimpleNote(wp家的,免费) pocket(稍后读的软件,同类的还有Instapap ...

  8. 题解——洛谷P1962 斐波那契数列(矩阵乘法)

    矩阵乘法加速线性递推的典型 大概套路就是先构造一个矩阵\( F \)使得另一初始矩阵\( A \)乘以\( F^{x} \)能够得出第n项 跑的飞快 虽然我也不知道那个矩阵要怎么构造 或许就像我使用了 ...

  9. 论文笔记之:Graph Attention Networks

    Graph Attention Networks 2018-02-06  16:52:49 Abstract: 本文提出一种新颖的 graph attention networks (GATs), 可 ...

  10. UVA 10870 Recurrences(矩阵乘法)

    题意 求解递推式 \(f(n)=a_1*f(n-1)+a_2*f(n-2)+....+a_d*f(n-d)\) 的第 \(n\) 项模以 \(m\). \(1 \leq n \leq 2^{31}-1 ...