OJ题号:

BZOJ1834、洛谷2604

思路:

对于第一问,直接跑一遍最大流即可。
对于第二问,将每条边分成两种情况,即将每条边拆成两个:
不需扩容,即残量大于零时,相当于这条边费用为$0$;
需要扩容,即残量等于零时,可以扩容很多次,将残量设为$inf$或者$k$(实际上最多扩容$k$次)。
由于$k≤10$,跑$k$遍流量为$1$的最小费用流即可。

 #include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstring>
inline int getint() {
char ch;
while(!isdigit(ch=getchar()));
int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int inf=0x7fffffff;
int n,m,k,s,t;
struct Edge {
int from,to,remain,cost;
};
const int E=,V=;
Edge e[E];
std::vector<int> g[V];
int sz=;
inline void add_edge(const int u,const int v,const int w,const int c) {
e[sz]=(Edge){u,v,w,c};
g[u].push_back(sz);
sz++;
}
int p[V],a[V];
inline int MFAugment() {
memset(a,,sizeof a);
a[s]=inf;
std::queue<int> q;
q.push(s);
while(!q.empty()&&!a[t]) {
int x=q.front();
q.pop();
for(unsigned i=;i<g[x].size();i++) {
Edge &y=e[g[x][i]];
if(!a[y.to]&&y.remain) {
p[y.to]=g[x][i];
a[y.to]=std::min(a[x],y.remain);
q.push(y.to);
}
}
}
return a[t];
}
inline int MF() {
int maxflow=;
while(int flow=MFAugment()) {
for(int i=t;i!=s;i=e[p[i]].from) {
e[p[i]].remain-=flow;
e[p[i]^].remain+=flow;
}
maxflow+=flow;
}
return maxflow;
}
int d[V];
bool inq[V];
inline int MCAugment() {
d[s]=;
for(int i=;i<=t;i++) d[i]=inf;
std::queue<int> q;
q.push(s);
memset(inq,,sizeof inq);
inq[s]=true;
while(!q.empty()) {
int x=q.front();
q.pop();
inq[x]=false;
for(unsigned i=;i<g[x].size();i++) {
Edge &y=e[g[x][i]];
if((d[x]+y.cost<d[y.to])&&y.remain&&(y.cost>=)) {
d[y.to]=d[x]+y.cost;
p[y.to]=g[x][i];
if(!inq[y.to]) {
q.push(y.to);
inq[y.to]=true;
}
}
}
}
return d[t];
}
inline int MC() {
int mincost=;
while(k--) {
int cost=MCAugment();
for(int i=t;i!=s;i=e[p[i]].from) {
e[p[i]].remain--;
e[p[i]^].remain++;
}
mincost+=cost;
}
return mincost;
}
int main() {
n=getint(),m=getint(),k=getint();
s=,t=n;
while(m--) {
int u=getint(),v=getint(),w=getint(),c=getint();
add_edge(u,v,w,c);
add_edge(v,u,,-c);
}
printf("%d ",MF());
int oldsz=sz;
for(int i=;i<oldsz;i++) {
int u=e[i].from,v=e[i].to,w=e[i].remain,c=e[i].cost;
e[i]=(Edge){u,v,w,};
add_edge(u,v,inf,c);
}
printf("%d\n",MC());
return ;
}

[ZJOI2010]网络扩容的更多相关文章

  1. 【题解】Luogu P2604 [ZJOI2010]网络扩容

    原题传送门:P2604 [ZJOI2010]网络扩容 这题可以说是板题 给你一个图,先让你求最大流 再告诉你,每条边可以花费一些代价,使得流量加一 问至少花费多少代价才能使最大流达到k 解法十分简单 ...

  2. 洛谷 P2604 [ZJOI2010]网络扩容 解题报告

    P2604 [ZJOI2010]网络扩容 题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. ...

  3. [Luogu 2604] ZJOI2010 网络扩容

    [Luogu 2604] ZJOI2010 网络扩容 第一问直接最大流. 第二问,添加一遍带费用的边,边权 INF,超级源点连源点一条容量为 \(k\) 的边来限流,跑费用流. 大约是第一次用 nam ...

  4. ZJOI2010网络扩容

    无限orz hzwer神牛…… 第一问很简单,按数据建图,然后一遍最大流算法即可.     第二问则需要用最小费用最大流算法,主要是建图,那么可以从第一问的残留网络上继续建图,对残留网络上的每一条边建 ...

  5. BZOJ1834[ZJOI2010]网络扩容——最小费用最大流+最大流

    题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求:  1.在不扩容的情况下,1到N的最大流:  2.将1到N的最大流增加K所需的最小扩容费用 ...

  6. 1834. [ZJOI2010]网络扩容【费用流】

    Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求:  1.在不扩容的情况下,1到N的最大流:  2.将1到N的最大流增加K所需 ...

  7. BZOJ1834:[ZJOI2010]网络扩容——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=1834 https://www.luogu.org/problemnew/show/P2604#sub ...

  8. [洛谷P2604][ZJOI2010]网络扩容

    题目大意:给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1.在不扩容的情况下,1到N的最大流: 2.将1到N的最大流增加K所需的最小费用. 题解 ...

  9. bzoj1834 [ZJOI2010]网络扩容

    Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的 ...

随机推荐

  1. DFP算法(转载)

    转载链接:http://blog.csdn.net/itplus/article/details/21896981 注意:式(2.25)中,蓝色变量之所以是实数可以根据它们的矩阵系数相乘为1*1得到.

  2. 三 、 Multivariance Linear Regssion练习(转载)

    转载:http://www.cnblogs.com/tornadomeet/archive/2013/03/15/2962116.html 前言: 本文主要是来练习多变量线性回归问题(其实本文也就3个 ...

  3. 关注网页的更新状况,了解最新的handsup 消息.

    // 第一部分是网页截图和源码保存 // upon page load. var fs = require("fs"); var resourceWait = 300, maxRe ...

  4. Websphere MQ Cluster

    大纲: 1.什么是集群 2.建立一个基本的集群 3.DISPLAY命令 4.负载均衡 5.高级配置和管理 6.答疑 7.关于文章.红宝书等 一. 什么是集群       集群就是Websphere M ...

  5. Linux清除文件内容的几种方法

    # 清空或删除大文件内容的五种方法: # 法一:通过重定向到 Null 来清空文件内容 $ >test.sh # 法二:使用 ‘true' 命令重定向来清空文件 $ true > test ...

  6. Android GsmCellLocation.getCellLocation返回NULL

    Android GsmCellLocation.getCellLocation返回NULL 1.首先 获取服务 telephonyManager =(TelephonyManager)getSyste ...

  7. rsync使用详解

    1.什么是Rsync Rsync(remote synchronize)是一个远程数据同步工具,可通过LAN/WAN快速同步多台主机间的文件.Rsync使用所谓的“Rsync算法”来使本地和远 程两个 ...

  8. 关系操作符 < > = == <= >= !=

    基本类型可以用所有的操作符 对象要用equal eqauls() //用法 System.out.println(v1.equals(v2)); JAVA学习(二) STRING使用EQUALS方法和 ...

  9. 兼容IE8以下,获取className节点的元素(document.getElementsByClassName()兼容写法)。

    因为ie8一下不兼容                 document.getElementsByClassName()                 功能:通过class的名字获取符合条件的元素 ...

  10. bootstrap 列表--水平定义列表

    水平定义列表就像内联列表一样,Bootstrap可以给<dl>添加类名“.dl-horizontal”给定义列表实现水平显示效果. @media (min-width: 768px) { ...