题目链接

\(Description\)

有\(n\)个人在一条直线上跑步,每个人的起点 \(Si\)、终点 \(Ei\) 已知;每个点可以放一个广告牌,一个人\(i\)能看到的广告牌数量为 \(Ei-Si+1\)。

要求使每个人看到的广告牌数量不小于 \(k\) (若 \(Ei-Si+1<k\) 则应看到 \(Ei-Si+1\))。输出最少需要多少广告牌及方案。

(这翻译2333)

\(Solution\)

设 \(Sum_i\) 表示在 \([1,i]\) 广告牌总数,那么由题意有 \(Sum_{Ei}-Sum_{Si-1}>=k\),这是对于 \(Ei-Si+1>=k\) 的

设 \(C=Ei-Si+1\),若C<k,则 \(Sum_{Ei}-Sum_{Si-1}=C\),拆成两个式子

同时每个位置的限制 \(0<=Sum_i-Sum_{i-1}<=1\)

以 \(Sum_i\) 为点建边,求 \(Sum_0\) -> \(Sum_n\) 的最长路即为最少需要数量

输出方案: 若\(i\)处建了广告牌,则有 \(dis_i-dis_{i-1}=1\)

注意,Dijkstra不能用来求最长路

//1240K	735MS
#include <queue>
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
#define mp std::make_pair
#define pr std::pair<int,int>
const int N=10005,M=60005,INF=0x3f3f3f3f; int n,K,Enum,H[N<<1],nxt[M],to[M],val[M],dis[N<<1];
bool vis[N<<1];
//std::priority_queue<pr> q;
std::queue<int> que; inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
inline void AddEdge(int u,int v,int w){
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, val[Enum]=w;
}
//int Dijkstra(int mn,int mx)
//{
// for(int i=mn+1; i<=mx; ++i) dis[i]=-INF;
// q.push(mp(0,mn));
// while(!q.empty())
// {
// int x=q.top().second;q.pop();
// if(vis[x]) continue;
// vis[x]=1;
// for(int i=H[x]; i; i=nxt[i])
// if(dis[to[i]]<dis[x]+val[i])
// {
// dis[to[i]]=dis[x]+val[i];
// if(!vis[to[i]]) q.push(mp(dis[to[i]],to[i]));
// }
// }
// return dis[mx];
//}
int SPFA(int mn,int mx)
{
for(int i=mn+1; i<=mx; ++i) dis[i]=-INF;
que.push(mn);
while(!que.empty())
{
int x=que.front();que.pop();
vis[x]=0;
for(int i=H[x]; i; i=nxt[i])
if(dis[to[i]]<dis[x]+val[i])
{
dis[to[i]]=dis[x]+val[i];
if(!vis[to[i]]) que.push(to[i]),vis[to[i]]=1;
}
}
return dis[mx];
} int main()
{
K=read(),n=read();
int mx=0,mn=N<<1;
for(int st,ed,t,i=1; i<=n; ++i)
{
st=read()+N, ed=read()+N;
if(st>ed) std::swap(st,ed);
mn=std::min(mn,--st), mx=std::max(mx,ed);
if((t=ed-st)<K) AddEdge(st,ed,t),AddEdge(ed,st,-t);
else AddEdge(st,ed,K);
}
mn-=2;
for(int i=mn; i<=mx; ++i) AddEdge(i-1,i,0),AddEdge(i,i-1,-1);
printf("%d\n",SPFA(mn,mx));
for(int i=mn; i<=mx; ++i)
if(dis[i]==dis[i-1]+1) printf("%d\n",i-N);
return 0;
}

POJ.1752.Advertisement(差分约束 最长路SPFA)的更多相关文章

  1. poj 1752 Advertisement (差分约束)

    题目大意:题目大意:有n个人在一条路上跑步,广告商准备在这条路上设置广告牌,假设这条路上每一个点有一个广告牌 现在已知这n个人从Ai开始跑,到Bi结束,那么他可以看到max(Ai,Bi)-min(Ai ...

  2. HDU.1529.Cashier Employment(差分约束 最长路SPFA)

    题目链接 \(Description\) 给定一天24h 每小时需要的员工数量Ri,有n个员工,已知每个员工开始工作的时间ti(ti∈[0,23]),每个员工会连续工作8h. 问能否满足一天的需求.若 ...

  3. 【bzoj3436】小K的农场 差分约束系统+最长路-Spfa

    原文地址:http://www.cnblogs.com/GXZlegend/p/6801470.html 题目描述 背景 小K是个特么喜欢玩MC的孩纸... 描述 小K在MC里面建立很多很多的农场,总 ...

  4. HDU1529-Casher Emploryment(最最...最经典的差分约束 差分约束-最长路+将环变线)

    A supermarket in Tehran is open 24 hours a day every day and needs a number of cashiers to fit its n ...

  5. HDU4109-instruction agreement(差分约束-最长路+建立源点,汇点)

    Ali has taken the Computer Organization and Architecture course this term. He learned that there may ...

  6. poj 1201 Intervals(差分约束)

    题目:http://poj.org/problem?id=1201 题意:给定n组数据,每组有ai,bi,ci,要求在区间[ai,bi]内至少找ci个数, 并使得找的数字组成的数组Z的长度最小. #i ...

  7. POJ 3169 Layout (差分约束)

    题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个, ...

  8. [poj 3159]Candies[差分约束详解][朴素的考虑法]

    题意 编号为 1..N 的人, 每人有一个数; 需要满足 dj - di <= c 求1号的数与N号的数的最大差值.(略坑: 1 一定要比 N 大的...difference...不是" ...

  9. POJ——3169Layout(差分约束)

    POJ——3169Layout Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14702   Accepted ...

随机推荐

  1. Three.js基础探寻二——正交投影照相机

    本篇主要介绍照相机中的正交投影照相机. 第一篇传送门:Three.js基础探寻一 1.照相机 图形学中的照相机定义了三维空间到二维屏幕的投影方式. 针对投影方式照相机分为正交投影照相机和透视投影照相机 ...

  2. Elastic-Job-Lite分析——作业调度器 JobScheduler 的创建过程

    -----------------------------------1. 创建注册中心的对象----------------------------------------------------- ...

  3. Windows10 中在指定目录下启动Powershell

    (1)首先进入该目录: (2)按住shift键,且同时在该目录空白处鼠标右击,打开右键菜单: (3)此时可以发现,在右键菜单中,多了一项,叫做[在此处打开Powershell窗口(s)],点击该项: ...

  4. C++编程命名规则

    原文地址:http://www.cnblogs.com/ggjucheng/archive/2011/12/15/2289291.html 如果想要有效的管理一个稍微复杂一点的体系,针对其中事物的一套 ...

  5. exp自动备份在bat中不执行

    在命令行前加cd c:\users\...... 先定位进入可以exp的目录下,再执行exp

  6. linux 内核是什么?

    一:linux系统如何构成的?User space:User Applications and GNU C library (glibc)kernel space:System Call interf ...

  7. Ex 6_4 判断序列是否由合法单词组成..._第六次作业

    设字符串为s,字符串中字符的个数为n,vi[i]表示前i+1个字符是否能组成有效的单词vi[i]=true表示能组成有效的单词,vi[i]=false表示不能组成有效的单词,在每个字符串前加一个空格, ...

  8. javascript 什么类型没有toString()?

    JS里面任何对象都有toString()方法么?不是! null和undefined就没有!虽然null用typeof看的时候,是object类型的. 另外number对象调用toString()会报 ...

  9. 性能测试七:jmeter进阶之文件上传下载、定时器

    一.上传下载 上传: 1,POST请求,勾选 use …for post 2,同请求一起发送文件里,填写文件名称,参数名称 3,MIME类型: application/octet-stream(非必须 ...

  10. 性能测试四:jmeter进阶之逻辑控制器

    常用的逻辑控制器 1,循环控制器:可以设置该控制器内的sampler执行的次数,循环次数与线程的循环次数各自独立 2,if控制器:根据判断条件决定是否执行该控制器内的请求,如果是字符串比较条件,参数和 ...