题目链接

贴个教程: 四边形不等式学习笔记

\(Description\)

给出平面上的\(n\)个点,满足\(X_i\)严格单增,\(Y_i\)严格单减。以\(x\)轴和\(y\)轴正方向作边,使这\(n\)个点构成一棵树,最小化树边边的总长。

\(Solution\)

考虑有两棵构造好的树,要合并这两棵树,要从右边的树中找一个最优点连到左边的树上

不难想到区间DP(真的想不到==)

\(f[i][j]\)表示将\([i,j]\)合并为一棵树的最小代价,那么有 \(f[i][j] = \min\{ f[i][k-1]+f[k][j]+cost(i,j,k) \}\)

\(cost(i,j,k)=X[k]-X[i]+Y[k-1]-Y[j]\) //ps: 当前左边树主干在 \(Xi\) 位置,且下部高度为 \(Y_{k-1}\),合并后下部应为 \(Yj\);另外肯定是拿右边树的最左上点合并啊

这个\(cost\)是三维的,证不了\(cost\)满足四边形不等式

那想下 决策应该是满足单调性的,即 \(P[i][j-1]\leq P[i][j]\leq P[i+1][j]\)

注意左端点应是\(\max(P[i][j-1],i+1)\)

\(f\)应该满足四边形不等式,不会证。

#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
const int N=1005; int n,X[N],Y[N],P[N][N],f[N][N]; inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
} int main()
{
while(~scanf("%d",&n))
{
for(int i=1; i<=n; ++i) X[i]=read(),Y[i]=read();
memset(f,0x3f,sizeof f);
for(int i=1; i<=n; ++i) P[i][i]=i, f[i][i]=0;
for(int tmp,i=n-1; i; --i)
for(int j=i+1; j<=n; ++j)
for(int k=std::max(P[i][j-1],i+1); k<=P[i+1][j]; ++k)
if(f[i][j]>(tmp=f[i][k-1]+f[k][j]+X[k]-X[i]+Y[k-1]-Y[j]))
f[i][j]=tmp, P[i][j]=k;
printf("%d\n",f[1][n]);
}
return 0;
}

HDU.3516.Tree Construction(DP 四边形不等式)的更多相关文章

  1. HDU 3516 Tree Construction (四边形不等式)

    题意:给定一些点(xi,yi)(xj,yj)满足:i<j,xi<xj,yi>yj.用下面的连起来,使得所有边的长度最小? 思路:考虑用区间表示,f[i][j]表示将i到j的点连起来的 ...

  2. HDU 3516 Tree Construction

    区间$dp$,四边形优化. #pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio&g ...

  3. CSP 201612-4 压缩编码 【区间DP+四边形不等式优化】

    问题描述 试题编号: 201612-4 试题名称: 压缩编码 时间限制: 3.0s 内存限制: 256.0MB 问题描述: 问题描述 给定一段文字,已知单词a1, a2, …, an出现的频率分别t1 ...

  4. Codevs 3002 石子归并 3(DP四边形不等式优化)

    3002 石子归并 3 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次 ...

  5. HDU 3516 DP 四边形不等式优化 Tree Construction

    设d(i, j)为连通第i个点到第j个点的树的最小长度,则有状态转移方程: d(i, j) = min{ d(i, k) + d(k + 1, j) + p[k].y - p[j].y + p[k+1 ...

  6. 【HDU】3516 Tree Construction

    http://acm.hdu.edu.cn/showproblem.php?pid=3516 题意:平面n个点且满足xi<xj, yi>yj, i<j.xi,yi均为整数.求一棵树边 ...

  7. hdu 3506 Monkey Party 区间dp + 四边形不等式优化

    http://acm.hdu.edu.cn/showproblem.php?pid=3506 四边行不等式:http://baike.baidu.com/link?url=lHOFq_58V-Qpz_ ...

  8. HDOJ 3516 Tree Construction

    四边形优化DP Tree Construction Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Jav ...

  9. HDU 2829 Lawrence(动态规划-四边形不等式)

    Lawrence Problem Description T. E. Lawrence was a controversial figure during World War I. He was a ...

随机推荐

  1. UML和模式应用5:细化阶段(1)--第1次迭代

    1.前言 从本文开始进入细化阶段,讨论迭代技术的基础,本次讨论将着重讨论第一次迭代,以POS机为例. 2. 第一次迭代处理的需求(以NextGen POS项目处理销售用例) 实现 处理销售 用例中基本 ...

  2. Lucas卢卡斯定理

    当$p$为素数时 $$C_n^m\equiv C_{n/p}^{m/p}*C_{n\%p}^{m\%p}(mod\ p)$$ 设$n=s*p+q,m\equiv t*p+r(q,r<=p)$ 我 ...

  3. bzoj 1803: Spoj1487 Query on a tree III(主席树)

    题意 你被给定一棵带点权的n个点的有根数,点从1到n编号. 定义查询 query(x,k): 寻找以x为根的k大点的编号(从小到大排序第k个点) 假设没有两个相同的点权. 输入格式: 第一行为整数n, ...

  4. listener failed: zbx_tcp_listen() fatal error: unable to serve on any address [[-]:20050]

    故障现象: 客户端报错:service zabbix-agent 启动后,端口没有被正常监听,服务端也无法正常连接 将客户端改为二进制文件安装也不能正常启动/usr/local/zabbix/sbin ...

  5. Solution of Publishing failed with multiple errors Error copying file static\

    1.前言 由于系统被IT打了防病毒补丁,然后启动web项目一直出现Publishing failed with multiple errors Error copying file static... ...

  6. poj1990两个树状数组

    垃圾poj交不上去 /* 按权值从小到大排序, 两个树状数组维护权值小于等于并且在i左边的点的个数和权值 */ #include<iostream> #include<cstring ...

  7. 性能测试五:jmeter进阶之后置处理器(正则、json提取器)

    如,从get返回的json中提取stock的值 作为post的请求参数 1.JSON提取器 专门对json数据进行提取的后置处理器 Debug Sampler:记录之前的请求的所有参数及数据 2.正则 ...

  8. DOM事件监听器

    DOM事件监听器,允许一个事件触发多个方法.在实际工作中应用比较多. 它的调用形式如下: <body> <div> DOM事件监听器,允许一个事件触发多个方法. </di ...

  9. C# int可以表示的最大值

    C#中int由4个字节组成,即由32个二进制数组成,由于最高位是用于表示正负数,所以实际上int所能表示的最大数为231-1=2147483647.

  10. Jquery监听AJAX请求

    .ajaxComplete() 当Ajax请求完成后注册一个回调函数.这是一个 AjaxEvent. .ajaxError() Ajax请求出错时注册一个回调处理函数,这是一个 Ajax Event. ...