思路

和YY的GCD类似但是更加简单了

类似的推一波公式即可

\[F(n)=\sum_{n|d}f(d)
\]

\[f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)
\]

\[F(d)=\lfloor\frac{n}{d}\rfloor\times\lfloor\frac{m}{d}\rfloor
\]

\[f(x)=\sum_{x|d}\mu(\frac{d}{x})\times\lfloor\frac{n}{d}\rfloor\times\lfloor\frac{m}{d}\rfloor
\]

\[f(x)=\sum_{t=1}^{\lfloor\frac{n}{x}\rfloor}\mu(t)\times\lfloor\frac{n}{x\times t}\rfloor\times\lfloor\frac{m}{x\times t}\rfloor
\]

然后整除分块即可

代码

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int T,n,m,mu[51000],iprime[51000],isprime[51000],summu[51000],cnt,k;
void prime(int n){
isprime[1]=true;
mu[1]=1;
for(int i=2;i<=n;i++){
if(!isprime[i])
iprime[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&iprime[j]*i<=n;j++){
isprime[iprime[j]*i]=true;
mu[iprime[j]*i]=-mu[i];
if(i%iprime[j]==0){
mu[iprime[j]*i]=0;
break;
}
}
}
for(int i=1;i<=n;i++)
summu[i]=summu[i-1]+mu[i];
}
long long f(int k){
long long ans=0;
for(int l=1,r;l<=min(n,m);l=r+1){
r=min((n/(n/(l))),(m/(m/(l))));
ans+=1LL*(summu[r]-summu[l-1])*(n/(l*k))*(m/(l*k));
}
return ans;
}
int main(){
prime(50100);
scanf("%d",&T);
while(T--){
scanf("%d %d %d",&n,&m,&k);
if(n<m)
swap(n,m);
printf("%lld\n",f(k));
}
return 0;
}

P3455 [POI2007]ZAP-Queries(莫比乌斯反演)的更多相关文章

  1. 【BZOJ】1101 [POI2007]Zap(莫比乌斯反演)

    题目 传送门:QWQ 分析 莫比乌斯反演. 还不是很熟练qwq 代码 //bzoj1101 //给出a,b,d,询问有多少对二元组(x,y)满足gcd(x,y)=d.x<=a,y<=b # ...

  2. BZOJ1101 POI2007 Zap 【莫比乌斯反演】

    BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...

  3. 【BZOJ1101】[POI2007] Zap(莫比乌斯反演)

    点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^M[gcd(x,y)==d]\). 一道类似的题目 推荐先去做一下这道题:[洛谷2257]YY的GCD,来初步了解一下莫比乌 ...

  4. 洛谷P3455 [POI2007]ZAP-Queries (莫比乌斯反演)

    题意:求$\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==d]$(1<=a,b,d<=50000). 很套路的莫比乌斯反演. $\sum_{i=1}^{n}\ ...

  5. 洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)

    传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rflo ...

  6. BZOJ 1101 [POI2007]Zap(莫比乌斯反演)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1101 [题目大意] 求[1,n][1,m]内gcd=k的情况 [题解] 考虑求[1,n ...

  7. ☆ [POI2007] ZAP-Queries 「莫比乌斯反演」

    题目类型:莫比乌斯反演 传送门:>Here< 题意:求有多少对正整数对\((a,b)\),满足\(0<a<A\),\(0<b<B\),\(gcd(a,b)=d\) ...

  8. [luogu3455][POI2007]ZAP-Queries【莫比乌斯反演】

    题目描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得 ...

  9. 【BZOJ】1101: [POI2007]Zap(莫比乌斯+分块)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1101 无限膜拜数论和分块orz 首先莫比乌斯函数的一些性质可以看<初等数论>或<具 ...

随机推荐

  1. Rpgmakermv(7) Chronus.js说明与简要翻译

    插件地址:https://github.com/triacontane/RPGMakerMV/blob/master/Chronus.js 日语版 ゲーム内で時刻と天候の概念を表現できるプラグインです ...

  2. sublime text3配置及相关小技巧

    1.下载&安装: 官方地址:http://www.sublimetext.com/,sublime text3又更新了,支持不依赖插件进行侧边栏颜色的更改,同时自带的皮肤颜色也有四种,十分方便 ...

  3. html5-css的引入

    <!DOCTYPE html><html lang="en"><head>    <meta charset="UTF-8&qu ...

  4. hdu3374 最大最小表示法 +kmp

    #include <iostream> #include <algorithm> #include <string.h> #include <cstdio&g ...

  5. sitecore系统教程之限制对客户端的访问

    如果您为不同目的配置服务器,根据角色,您可能需要禁用Sitecore客户端.例如,如果配置内容交付服务器或处理服务器,则无需访问客户端应用程序,因此在这种情况下,建议禁用客户端. 为防止未经授权访问S ...

  6. .net 缓存

    缓存有很多实现方法,所有这些可以被分为两类,基于内存的缓存和基于磁盘的缓存: 1.  内存驻留缓存——包含在内存中临时存储数据的所有实现方法,通常在以下情况下使用: a)       应用程序频繁使用 ...

  7. MySql 学习参考目录

    [1]< MySql 数据类型> [2]< MySql 基础 > [3]< MySql 存储过程 > PS:个人认为,如上总结超值. Good Good Study ...

  8. django之auth认证系统

    Django自带的用户认证 我们在开发一个网站的时候,无可避免的需要设计实现网站的用户系统.此时我们需要实现包括用户注册.用户登录.用户认证.注销.修改密码等功能,这还真是个麻烦的事情呢. Djang ...

  9. java 的Colections类(Java也有python类似列表的反转、排序等方法)

    1.Collections类概述         针对集合操作 的工具类,都是静态方法   2.Collections成员方法         public static <T> void ...

  10. java中的神奇"this"

    java中的神奇"this",神奇的原因事它能不用new就可以直接创造一个对象出来,后来研究发现,其实java的“this”使用时,也是"new"了一个当前的对 ...