P3455 [POI2007]ZAP-Queries(莫比乌斯反演)
思路
和YY的GCD类似但是更加简单了
类似的推一波公式即可
\]
\]
\]
\]
\]
然后整除分块即可
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int T,n,m,mu[51000],iprime[51000],isprime[51000],summu[51000],cnt,k;
void prime(int n){
isprime[1]=true;
mu[1]=1;
for(int i=2;i<=n;i++){
if(!isprime[i])
iprime[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&iprime[j]*i<=n;j++){
isprime[iprime[j]*i]=true;
mu[iprime[j]*i]=-mu[i];
if(i%iprime[j]==0){
mu[iprime[j]*i]=0;
break;
}
}
}
for(int i=1;i<=n;i++)
summu[i]=summu[i-1]+mu[i];
}
long long f(int k){
long long ans=0;
for(int l=1,r;l<=min(n,m);l=r+1){
r=min((n/(n/(l))),(m/(m/(l))));
ans+=1LL*(summu[r]-summu[l-1])*(n/(l*k))*(m/(l*k));
}
return ans;
}
int main(){
prime(50100);
scanf("%d",&T);
while(T--){
scanf("%d %d %d",&n,&m,&k);
if(n<m)
swap(n,m);
printf("%lld\n",f(k));
}
return 0;
}
P3455 [POI2007]ZAP-Queries(莫比乌斯反演)的更多相关文章
- 【BZOJ】1101 [POI2007]Zap(莫比乌斯反演)
题目 传送门:QWQ 分析 莫比乌斯反演. 还不是很熟练qwq 代码 //bzoj1101 //给出a,b,d,询问有多少对二元组(x,y)满足gcd(x,y)=d.x<=a,y<=b # ...
- BZOJ1101 POI2007 Zap 【莫比乌斯反演】
BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...
- 【BZOJ1101】[POI2007] Zap(莫比乌斯反演)
点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^M[gcd(x,y)==d]\). 一道类似的题目 推荐先去做一下这道题:[洛谷2257]YY的GCD,来初步了解一下莫比乌 ...
- 洛谷P3455 [POI2007]ZAP-Queries (莫比乌斯反演)
题意:求$\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==d]$(1<=a,b,d<=50000). 很套路的莫比乌斯反演. $\sum_{i=1}^{n}\ ...
- 洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)
传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rflo ...
- BZOJ 1101 [POI2007]Zap(莫比乌斯反演)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1101 [题目大意] 求[1,n][1,m]内gcd=k的情况 [题解] 考虑求[1,n ...
- ☆ [POI2007] ZAP-Queries 「莫比乌斯反演」
题目类型:莫比乌斯反演 传送门:>Here< 题意:求有多少对正整数对\((a,b)\),满足\(0<a<A\),\(0<b<B\),\(gcd(a,b)=d\) ...
- [luogu3455][POI2007]ZAP-Queries【莫比乌斯反演】
题目描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得 ...
- 【BZOJ】1101: [POI2007]Zap(莫比乌斯+分块)
http://www.lydsy.com/JudgeOnline/problem.php?id=1101 无限膜拜数论和分块orz 首先莫比乌斯函数的一些性质可以看<初等数论>或<具 ...
随机推荐
- Sql日期时间格式转换[zhuan]
sql server2000中使用convert来取得datetime数据类型样式(全) 日期数据格式的处理,两个示例: CONVERT(varchar(16), 时间一, 20) 结果:2007-0 ...
- EasyUI表格DataGrid获取数据的方式
第一种方式:直接返回JSON数据 package com.easyuijson.util; import java.text.SimpleDateFormat; import net.sf.js ...
- .net 常见异常及其翻译
System.Exception//所有异常的基类型 System.ApplicationException//发生非致命应用程序错误时引发的异常 System.SystemException//为S ...
- Lua逻辑操作符
[1]逻辑操作符and.or和not 应用示例: ) ) -- nil ) -- false ) ) ) ) ) ) ) print(not nil) -- ture print(not false) ...
- Linux服务器---流量监控bandwidthd
Bandwidthd Bandwidthd是一款免费的流量监控软件,它可以用图标的方式展现出网络流量行为,并且可区分出ftp.tcp等各种协议的流量. 1.安装一些依赖软件 [root@localho ...
- HADOOP nutch java mysql
下载Hadoop安装包 wget http://apache.fayea.com/hadoop/common/hadoop-2.7.2/hadoop-2.7.2.tar.gz java安装 wg ...
- Python爬虫——小说
#encoding:utf8 import re import urllib2 url = 'http://www.23us.com/html/55/55304/' request = urllib2 ...
- B/S开发介绍
b/s 的优势: 1.开发成本低 2.管理维护简单 3.产品升级便利 4.对用户的培训费用低 5.用户使用方便,出现故障的概率小 b/s 的不足: 1.安全性不足 2.客户端不能随心变化,受浏览器限制
- ltp执行过程总结
命令行:./runltp -b DEVICE -f timers -p -l result-log-timers.20180824 -o screen-log-timers.20180824 runl ...
- 如何将OpenCV中的Mat类绑定为OpenGL中的纹理
https://blog.csdn.net/TTTTzTTTT/article/details/53456324 如果要调用外接的USB摄像头获取图像通常使用OpenCV来调用,如何调用摄像头请参考本 ...