P3455 [POI2007]ZAP-Queries(莫比乌斯反演)
思路
和YY的GCD类似但是更加简单了
类似的推一波公式即可
\]
\]
\]
\]
\]
然后整除分块即可
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int T,n,m,mu[51000],iprime[51000],isprime[51000],summu[51000],cnt,k;
void prime(int n){
isprime[1]=true;
mu[1]=1;
for(int i=2;i<=n;i++){
if(!isprime[i])
iprime[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&iprime[j]*i<=n;j++){
isprime[iprime[j]*i]=true;
mu[iprime[j]*i]=-mu[i];
if(i%iprime[j]==0){
mu[iprime[j]*i]=0;
break;
}
}
}
for(int i=1;i<=n;i++)
summu[i]=summu[i-1]+mu[i];
}
long long f(int k){
long long ans=0;
for(int l=1,r;l<=min(n,m);l=r+1){
r=min((n/(n/(l))),(m/(m/(l))));
ans+=1LL*(summu[r]-summu[l-1])*(n/(l*k))*(m/(l*k));
}
return ans;
}
int main(){
prime(50100);
scanf("%d",&T);
while(T--){
scanf("%d %d %d",&n,&m,&k);
if(n<m)
swap(n,m);
printf("%lld\n",f(k));
}
return 0;
}
P3455 [POI2007]ZAP-Queries(莫比乌斯反演)的更多相关文章
- 【BZOJ】1101 [POI2007]Zap(莫比乌斯反演)
题目 传送门:QWQ 分析 莫比乌斯反演. 还不是很熟练qwq 代码 //bzoj1101 //给出a,b,d,询问有多少对二元组(x,y)满足gcd(x,y)=d.x<=a,y<=b # ...
- BZOJ1101 POI2007 Zap 【莫比乌斯反演】
BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...
- 【BZOJ1101】[POI2007] Zap(莫比乌斯反演)
点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^M[gcd(x,y)==d]\). 一道类似的题目 推荐先去做一下这道题:[洛谷2257]YY的GCD,来初步了解一下莫比乌 ...
- 洛谷P3455 [POI2007]ZAP-Queries (莫比乌斯反演)
题意:求$\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==d]$(1<=a,b,d<=50000). 很套路的莫比乌斯反演. $\sum_{i=1}^{n}\ ...
- 洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)
传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rflo ...
- BZOJ 1101 [POI2007]Zap(莫比乌斯反演)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1101 [题目大意] 求[1,n][1,m]内gcd=k的情况 [题解] 考虑求[1,n ...
- ☆ [POI2007] ZAP-Queries 「莫比乌斯反演」
题目类型:莫比乌斯反演 传送门:>Here< 题意:求有多少对正整数对\((a,b)\),满足\(0<a<A\),\(0<b<B\),\(gcd(a,b)=d\) ...
- [luogu3455][POI2007]ZAP-Queries【莫比乌斯反演】
题目描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得 ...
- 【BZOJ】1101: [POI2007]Zap(莫比乌斯+分块)
http://www.lydsy.com/JudgeOnline/problem.php?id=1101 无限膜拜数论和分块orz 首先莫比乌斯函数的一些性质可以看<初等数论>或<具 ...
随机推荐
- yii2验证密码->手机号码短信发送>手机短信发送频繁问题
<?php namespace frontend\models; use Yii; use yii\base\Model; class ChangeMobileSendRequestForm e ...
- 【Redis学习之五】Redis数据类型:列表和散列
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 redis-2.8.18 一.列表 基于Linked Lis ...
- 解读 JavaScript 之引擎、运行时和堆栈调用
https://www.oschina.net/translate/how-does-javascript-actually-work-part-1 随着 JavaScript 变得越来越流行,很多团 ...
- js定时器优化
在js中如果打算使用setInterval进行倒数,计时等功能,往往是不准确的,因为setInterval的回调函数并不是到时后立即执行,而是等系统计算资源空闲下来后才会执行.而下一次触发时间则是在s ...
- 自学Java第七周的总结
这一周里我将看过的知识点又复习了一遍,下个星期打算将题做一遍
- mysql命令(三)
创建一个名字为Student库: create database Student; 用以下地命令来查看创建的数据库是否成功: show databases; 进入数据库: use Student; 用 ...
- Django框架----ORM数据库操作注意事项
1.多对多的正向查询 class Class(models.Model): name = models.CharField(max_length=32,verbose_name="班级名&q ...
- echarts报错Can't get dom width or height
echarts图无法显示 一直报错Can't get dom width or height 原因:显示echarts图的div要设置宽高 报错前: <div class="left_ ...
- shell IFS
在bash中IFS是内部的域分隔符,manual中对其的叙述如下:IFS The Internal Field Separator that is used for word splitting af ...
- Kafka学习笔记之Kafka三款监控工具
0x00 概述 在之前的博客中,介绍了Kafka Web Console这 个监控工具,在生产环境中使用,运行一段时间后,发现该工具会和Kafka生产者.消费者.ZooKeeper建立大量连接,从而导 ...