本来是想做一个贝塞尔曲线运动轨迹的

公式太复杂了,懒得算,公式在最后

我先画了一个抛物线,我确定了两个点,起点(0,0),终点(200,200)

用坐标系可算出方程 y=-0.005x^2

现在找出终点的切线与X轴的交点,那个就是贝塞尔曲线的第二个参数,控制点

求出是(100,0)

现在重新绘制一个动态曲线,给X=X+0.1

y就是函数方程了y=0.005x^2  (注意没有负号了)

这样我们新绘制的线条就能在原来的红色线条上移动了

var oQuadraticCurveTo = document.getElementById("canvas");
var oContext = oQuadraticCurveTo.getContext("2d");
var x=2;
drawLine();
function drawLine(){
oContext.beginPath();
oContext.moveTo(0,0); //起始点(x,y)
oContext.quadraticCurveTo(100, 0, 200, 200); //创建二次贝塞尔曲线
oContext.lineWidth = 2;
oContext.strokeStyle = "tomato";
oContext.stroke();
oContext.closePath();
}
function drawPoint(x,y){
oContext.beginPath();
oContext.arc(x, y, 3, 0, 2 * Math.PI, false);
oContext.fillStyle="red";
oContext.fill(); oContext.stroke();
oContext.closePath();
} //画移动的线
function drawMivie(){ y=Math.pow(x,2)*0.005
console.log(y);
oContext.beginPath();
oContext.moveTo(x,y);
x=x+0.1; if(x > 198){
x=0;
}else{
//防止首位相连
y=Math.pow(x,2)*0.005
oContext.lineTo(x,y);
oContext.strokeStyle = "white";
oContext.lineWidth = 1;
oContext.stroke();
oContext.closePath();
} } drawPoint(0,0);
drawPoint(200,200);
//定位到起点 setInterval(function(){
drawMivie();
},1);

下面是一个改进版,小球沿着抛物线运动

var oQuadraticCurveTo = document.getElementById("canvas");
var oContext = oQuadraticCurveTo.getContext("2d");
var x=2; function drawLine(){
oContext.beginPath();
oContext.moveTo(0,0); //起始点(x,y)
oContext.quadraticCurveTo(100, 0, 200, 200); //创建二次贝塞尔曲线
oContext.lineWidth = 2;
oContext.strokeStyle = "tomato";
oContext.stroke();
oContext.closePath();
}
function drawPoint(x,y){
oContext.beginPath();
oContext.arc(x, y, 3, 0, 2 * Math.PI, false);
oContext.fillStyle="red";
oContext.fill(); oContext.stroke();
oContext.closePath(); } //画移动的线
function drawMivie(){ y=Math.pow(x,2)*0.005; if(x > 198){
x=0;
}else{
//防止首位相连
     //清楚之前的图,重新绘制
oContext.clearRect(0, 0, 500, 500);
oContext.closePath();
drawStatic(oContext);
//
x=x+1;
y=Math.pow(x,2)*0.005;
//画圆球
oContext.beginPath();
oContext.strokeStyle = "white";
oContext.arc(x,y,5,0,2*Math.PI,false);
oContext.fillStyle="white";
oContext.fill();
oContext.stroke();
oContext.closePath();
}
}
//画静态元素,红线和两端
function drawStatic(){
drawLine();
drawPoint(0,0);
drawPoint(200,200);
} setInterval(function(){
drawMivie(oContext);
},20);

公式先丢出来,万一以后真的要做复杂的曲线呢。。

用下列一组数据点P(0,1) P(1,1) P(1,0) 作为特征多边形的顶点,构造一条贝齐尔曲线,写出它的方程并作图

n个数据点构成(n-1)次贝塞尔曲线,
三个数据点构成二次贝塞尔曲线,二次贝塞尔曲线参数方程
(1 - t)^2 P0
+ 2 t (1 - t) P1 + t^2 P2;
曲线起点P0,终点P2,但一般不过P1点.

代入坐标后得到:
参数方程:
x = (1 - t)^2 * 0 + 2 t (1 -
t) * 1 + t^2 * 1 = 2 t (1 - t) + t^2,
y=
(1 - t)^2 * 1 + 2 t (1 - t) * 1 + t^2 * 0 = (1 - t)^2 + 2 t (1 - t)
,

消去参数 t 得到:
y = -1 + 2
Sqrt[1 - x] + x.

canvas抛物线运动轨迹的更多相关文章

  1. WebGL three.js学习笔记 阴影与实现物体的动画

    实现物体的旋转.跳动以及场景阴影的开启与优化 本程序将创建一个场景,并实现物体的动画效果 运行的结果如图: 完整代码如下: <!DOCTYPE html> <html lang=&q ...

  2. canvas动画—圆形扩散、运动轨迹

    介绍 在ECharts中看到过这种圆形扩散效果,类似css3,刚好项目中想把它用上,but我又不想引入整个echart.js文件,更重要的是想弄明白它的原理,所以自己动手.在这篇文章中我们就来分析实现 ...

  3. HTML5移动开发学习笔记之Canvas基础

    1.第一个Canvas程序 看的是HTML5移动开发即学即用这本书,首先学习Canvas基础,废话不多说,直接看第一个例子. 效果图为: 代码如下: <!DOCTYPE html> < ...

  4. canvas 制作flappy bird(像素小鸟)全流程

    flappy bird制作全流程: 一.前言 像素小鸟这个简单的游戏于2014年在网络上爆红,游戏上线一段时间内appleStore上的下载量一度达到5000万次,风靡一时, 近年来移动web的普及为 ...

  5. canvas的用法介绍

    目录 概述 绘图方法 图像处理方法 drawImage方法 getImageData方法,putImageData方法 toDataURL方法 save方法,restore方法 动画 像素处理 灰度效 ...

  6. Canvas绘制图形

    1.Canvas绘制一个蓝色的矩形 <!DOCTYPE html> <html> <head lang="en"> <meta chars ...

  7. 知乎背景图 canvas 效果

    思路分析: 1.创造一块画布, 2.在画布内随机产生一些小球,小球位置,半径,颜射,大小,速度等都可以随机产生, 3.定义画小球函数与小球移动函数, 4.将每一个小球圆心都与其它小球链接, 5判断每一 ...

  8. canvas标签(1)--线条、矩形、圆形、文本、阴影、抛小球

    从网上扒拉的代码,敲了敲代码玩. html页面显示内容很简单,只要写个canvas标签,给他一个id写js就可以了 <!DOCTYPE html> <html> <hea ...

  9. HTML5之Canvas画布

    先上代码: <canvas width="1000" height="800">浏览器不支持HTML5!</canvas> <sc ...

随机推荐

  1. Web开发之404小结

    404算是Web工程里最常见的错误代号了.今天做一个小结: 场景:[Tomcat运行正常,但无法访问自己建的项目:404] 结果:在URL拼写正确的情况下,无法访问目标工程任何页面 信息:[404]: ...

  2. luogu P1357 花园

    传送门 先考虑朴素dp,设\(f_{i,j}\)表示推了\(i\)次,前\(m\)个点的状态为二进制数\(j\)(这里记放C为1),转移的时候枚举下一位放什么,还要考虑是否满足C的个数\(\leq k ...

  3. mysql 查询优化~join算法

    一简介:参考了几位师兄,尤其是M哥大神的博客,让我恍然大悟,赶紧记录下二 原理: mysql的三种算法 1 Simple Nested-Loop Join 将驱动表/外部表的结果集作为循环基础数据,然 ...

  4. DSO windowed optimization 代码 (4)

    5 "step"计算 参考<DSO windowed optimization 公式>,计算各个优化变量的增加量. 公式再写一下: \[\begin{align} \b ...

  5. Maven聚合工程的使用

    创建一个service模块 接下来,在该项目中创建一个接口 创建一个实现类,并实现接口 在sm1234-web项目中,调用service的方法,需要在该项目的pom.xml中引入依赖Service模块 ...

  6. swift学习第一天---常量变量基础数据类型

    import Foundation /** * 1.常量 变量 知识要点:常量的定义用let 变量的定义用var 常量一旦定义便不可再更改. 变量定义之后可以在定义之后的程序中任意地方进行修改. */ ...

  7. mac系统在配置navicat时连接数据的时候提示can't connect to mysql server on '127.0.0.1'

          新建数据库连接的时候,将默认的端口号更改掉,改为3307,即可解决这个问题. 具体是为什么我也不清楚,我自己想的一个可能就是mac电脑 上的某个程序可能已经占用了3306那个默认的端口,因 ...

  8. ubuntu 14.04 安装 eclipse

    在安装 eclipse 之前必须先安装 jdk 1. 卸载默认的 jdk,以防安装出错 sudo apt-get purge openjdk* 2. 安装 jdk1.8.0_111 下载jdk1.8. ...

  9. List Control控件

    List Control控件 显示方式 属性[View]选择成[Report]. 添加成员变量 绑定变量:m_listCtrl 设置值 // 表头添加 m_listCtrl.SetExtendedSt ...

  10. Windows下Anaconda的安装和简单使用

    Windows下Anaconda的安装和简单使用 Anaconda is a completely free Python distribution (including for commercial ...