You are given string s consists of opening and closing brackets of four kinds <>, {}, [], (). There are two types of brackets: opening and closing. You can replace any bracket by another of the same type. For example, you can replace < by the bracket {, but you can't replace it by ) or >.

The following definition of a regular bracket sequence is well-known, so you can be familiar with it.

Let's define a regular bracket sequence (RBS). Empty string is RBS. Let s1 and s2 be a RBS then the strings s2, {s1}s2, [s1]s2, (s1)s2 are also RBS.

For example the string "[[(){}]<>]" is RBS, but the strings "[)()" and "][()()" are not.

Determine the least number of replaces to make the string s RBS.

Input

The only line contains a non empty string s, consisting of only opening and closing brackets of four kinds. The length of s does not exceed 106.

Output

If it's impossible to get RBS from s print Impossible.

Otherwise print the least number of replaces needed to get RBS from s.

Examples

Input

[<}){}

Output

2

Input

{()}[]

Output

0

Input

]]

Output

Impossible

意思是有左右两类括号,同类可以变形,求把所有括号消掉需要变形多少次,不可以消掉就输出impossible,加个例子{[}]这个是要两次;用stack栈

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include <iomanip>
#include<cmath>
#include<float.h>
#include<string.h>
#include<algorithm>
#define sf scanf
#define pf printf
#define mm(x,b) memset((x),(b),sizeof(x))
#include<vector>
#include<queue>
#include<stack>
#include<map>
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
typedef long double ld;
typedef double db;
const ll mod=1e9+100;
const db e=exp(1);
using namespace std;
const double pi=acos(-1.0);
char a[1000005];
int judge(int n)
{
stack<char>v;
int num1=0,num2=0,ans=0;
rep(i,0,n)
{
if(a[i]=='['||a[i]=='('||a[i]=='{'||a[i]=='<')
v.push(a[i]);
else
{
if(v.empty()) return -1;
switch(a[i])
{
case '>':if(v.top()!='<') ans++;break;
case ']':if(v.top()!='[') ans++; break;
case ')':if(v.top()!='(') ans++; break;
case '}':if(v.top()!='{') ans++; break;
}
v.pop();
}
}
if(!v.empty()) return -1;
return ans;
}
int main()
{
sf("%s",a);
int len=strlen(a);
if(len&1) { pf("Impossible"); return 0; }
if(judge(len)==-1) pf("Impossible");
else pf("%d",judge(len));
return 0;
}

D - Replace To Make Regular Bracket Sequence的更多相关文章

  1. Educational Codeforces Round 4 C. Replace To Make Regular Bracket Sequence 栈

    C. Replace To Make Regular Bracket Sequence 题目连接: http://www.codeforces.com/contest/612/problem/C De ...

  2. Replace To Make Regular Bracket Sequence

    Replace To Make Regular Bracket Sequence You are given string s consists of opening and closing brac ...

  3. CodeForces - 612C Replace To Make Regular Bracket Sequence 压栈

    C. Replace To Make Regular Bracket Sequence time limit per test 1 second memory limit per test 256 m ...

  4. Educational Codeforces Round 4 C. Replace To Make Regular Bracket Sequence

    题目链接:http://codeforces.com/contest/612/problem/C 解题思路: 题意就是要求判断这个序列是否为RBS,每个开都要有一个和它对应的关,如:<()> ...

  5. CF 612C. Replace To Make Regular Bracket Sequence【括号匹配】

    [链接]:CF [题意]:给你一个只含有括号的字符串,你可以将一种类型的左括号改成另外一种类型,右括号改成另外一种右括号 问你最少修改多少次,才能使得这个字符串匹配,输出次数 [分析]: 本题用到了栈 ...

  6. Codeforces Beta Round #5 C. Longest Regular Bracket Sequence 栈/dp

    C. Longest Regular Bracket Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.c ...

  7. CF1095E Almost Regular Bracket Sequence

    题目地址:CF1095E Almost Regular Bracket Sequence 真的是尬,Div.3都没AK,难受QWQ 就死在这道水题上(水题都切不了,我太菜了) 看了题解,发现题解有错, ...

  8. (CodeForces - 5C)Longest Regular Bracket Sequence(dp+栈)(最长连续括号模板)

    (CodeForces - 5C)Longest Regular Bracket Sequence time limit per test:2 seconds memory limit per tes ...

  9. 贪心+stack Codeforces Beta Round #5 C. Longest Regular Bracket Sequence

    题目传送门 /* 题意:求最长括号匹配的长度和它的个数 贪心+stack:用栈存放最近的左括号的位置,若是有右括号匹配,则记录它们的长度,更新最大值,可以在O (n)解决 详细解释:http://bl ...

随机推荐

  1. 大数模板 poj3982

    1. 这个模板不是自己写的,转载的别人转载的,还没学完c++的我,想写也没有那能力. 这个模板我用在了POJ的一道题上,传送门--POJ3982 一般大数的题,都可用这个模板解决,仅仅须要改动主函数就 ...

  2. 最新Android & iOS设计尺寸规范

    Android 和 iPhone.iPad以及主流手机屏幕的分辨率和相关设计尺寸规范 <点击看大图>

  3. java.lang.IllegalStateException——好头疼

    在我东,下下来一个项目总会出现启动不了的问题,这些问题往往在编译的时候发现不了,当你的服务器启动的时候,就是一片片的报错,有些问题可以通过异常的提示信息,判断出来哪里配置错了,但是也有些情况下,从异常 ...

  4. c链表之oc AutoReleasePool

    直接贴 原文吧: http://blog.sunnyxx.com/2014/10/15/behind-autorelease/

  5. 从NSTimer的失效性谈起(二):关于GCD Timer和libdispatch

    一.GCD Timer的创建和安放 尽管GCD Timer并不依赖于NSRunLoop,可是有没有可能在某种情况下,GCD Timer也失效了?就好比一開始我们也不知道NSTimer相应着一个runl ...

  6. Python中的format()函数

    普通格式化方法 (%s%d)生成格式化的字符串,其中s是一个格式化字符串,d是一个十进制数; 格式化字符串包含两部分:普通的字符和转换说明符(见下表), 将使用元组或映射中元素的字符串来替换转换说明符 ...

  7. 【Spark深入学习-11】Spark基本概念和运行模式

    ----本节内容------- 1.大数据基础 1.1大数据平台基本框架 1.2学习大数据的基础 1.3学习Spark的Hadoop基础 2.Hadoop生态基本介绍 2.1Hadoop生态组件介绍 ...

  8. select 语法

    select 语句主要语法: SELECT select_list [ INTO new_table ] FROM table_source [ WHERE search_condition ] [ ...

  9. 2. Attention Is All You Need(Transformer)算法原理解析

    1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原 ...

  10. Java知多少(86)文本框和文本区的输入输出

    在GUI中,常用文本框和文本区实现数据的输入和输出.如果采用文本区输入,通常另设一个数据输入完成按钮.当数据输入结束时,点击这个按钮.事件处理程序利用getText()方法从文本区中读取字符串信息.对 ...