最长公共子序列与最长公共字串 (dp)转载http://blog.csdn.net/u012102306/article/details/53184446
1. 问题描述
子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串
- cnblogs
- belong
比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与母串保持一致,我们将其称为公共子序列。最长公共子序列(Longest Common Subsequence,LCS),顾名思义,是指在所有的子序列中最长的那一个。子串是要求更严格的一种子序列,要求在母串中连续地出现。在上述例子的中,最长公共子序列为blog(cnblogs,belong),最长公共子串为lo(cnblogs, belong)。
2. 求解算法
对于母串X=<x1,x2,⋯,xm>, Y=<y1,y2,⋯,yn>,求LCS与最长公共子串。
暴力解法
假设 m<n, 对于母串X,我们可以暴力找出2的m次方个子序列,然后依次在母串Y中匹配,算法的时间复杂度会达到指数级O(n∗2的m次)。显然,暴力求解不太适用于此类问题。
动态规划
假设Z=<z1,z2,⋯,zk>是X与Y的LCS, 我们观察到
如果Xm=Yn,则Zk=Xm=Yn,有Zk−1是Xm−1与Yn−1的LCS;
如果Xm≠Yn,则Zk是Xm与Yn−1的LCS,或者是Xm−1与Yn的LCS。
因此,求解LCS的问题则变成递归求解的两个子问题。但是,上述的递归求解的办法中,重复的子问题多,效率低下。改进的办法——用空间换时间,用数组保存中间状态,方便后面的计算。这就是动态规划(DP)的核心思想了。
DP求解LCS
用二维数组c[i][j]记录串x1x2⋯xi与y1y2⋯yj的LCS长度,则可得到状态转移方程
代码实现
public static int lcs(String str1, String str2) {
int len1 = str1.length();
int len2 = str2.length();
int c[][] = new int[len1+][len2+];
for (int i = ; i <= len1; i++) {
for( int j = ; j <= len2; j++) {
if(i == || j == ) {
c[i][j] = ;
} else if (str1.charAt(i-) == str2.charAt(j-)) {
c[i][j] = c[i-][j-] + ;
} else {
c[i][j] = max(c[i - ][j], c[i][j - ]);
}
}
}
return c[len1][len2];
}
DP求解最长公共子串
前面提到了子串是一种特殊的子序列,因此同样可以用DP来解决。定义数组的存储含义对于后面推导转移方程显得尤为重要,糟糕的数组定义会导致异常繁杂的转移方程。考虑到子串的连续性,将二维数组c[i][j]用来记录具有这样特点的子串——结尾同时也为为串x1x2⋯xi与y1y2⋯yj的结尾——的长度。
得到转移方程:
最长公共子串的长度为 max(c[i,j]), i∈{1,⋯,m},j∈{1,⋯,n}。
代码实现
public static int lcs(String str1, String str2) {
int len1 = str1.length();
int len2 = str2.length();
int result = ; //记录最长公共子串长度
int c[][] = new int[len1+][len2+];
for (int i = ; i <= len1; i++) {
for( int j = ; j <= len2; j++) {
if(i == || j == ) {
c[i][j] = ;
} else if (str1.charAt(i-) == str2.charAt(j-)) {
c[i][j] = c[i-][j-] + ;
result = max(c[i][j], result);
} else {
c[i][j] = ;
}
}
}
return result;
}
例题
pat-C4 L2-008 最长对称的回文串
#include <bits/stdc++.h>
using namespace std;
const int N=1e3+;
char s1[N],s2[N];
int dp[N][N];
int main ()
{
gets (s1+); strcpy(s2+,s1+);
int len=strlen(s1+);
reverse(s2+, s2++len);
int ans=;
for (int i=;i<=len;i++)
for (int j=;j<=len;j++) {
if (i==||j==) dp[i][j]=;
else if (s1[i]==s2[j]) {
dp[i][j]=dp[i-][j-]+;
ans=max (ans,dp[i][j]);
}
else dp[i][j]=;
}
printf ("%d\n",ans);
return ;
}
最长公共子序列与最长公共字串 (dp)转载http://blog.csdn.net/u012102306/article/details/53184446的更多相关文章
- [Python]最长公共子序列 VS 最长公共子串[动态规划]
前言 由于原微软开源的基于古老的perl语言的Rouge依赖环境实在难以搭建,遂跟着Rouge论文的描述自行实现. Rouge存在N.L.S.W.SU等几大子评估指标.在复现Rouge-L的函数时,便 ...
- hdu 1950 最长上升子序列(lis) nlogn算法【dp】
这个博客说的已经很好了.http://blog.csdn.net/shuangde800/article/details/7474903 简单记录一下自己学的: 问题就是求一个数列最长上升子序列的长度 ...
- [Data Structure] LCSs——最长公共子序列和最长公共子串
1. 什么是 LCSs? 什么是 LCSs? 好多博友看到这几个字母可能比较困惑,因为这是我自己对两个常见问题的统称,它们分别为最长公共子序列问题(Longest-Common-Subsequence ...
- 动态规划 最长公共子序列 LCS,最长单独递增子序列,最长公共子串
LCS:给出两个序列S1和S2,求出的这两个序列的最大公共部分S3就是就是S1和S2的最长公共子序列了.公共部分 必须是以相同的顺序出现,但是不必要是连续的. 选出最长公共子序列.对于长度为n的序列, ...
- 【ZH奶酪】如何用Python计算最长公共子序列和最长公共子串
1. 什么是最长公共子序列?什么是最长公共子串? 1.1. 最长公共子序列(Longest-Common-Subsequences,LCS) 最长公共子序列(Longest-Common-Subseq ...
- 用Python计算最长公共子序列和最长公共子串
如何用Python计算最长公共子序列和最长公共子串 1. 什么是最长公共子序列?什么是最长公共子串? 1.1. 最长公共子序列(Longest-Common-Subsequences,LCS) 最长公 ...
- 动态规划1——最长递增子序列、最长公共子序列、最长公共子串(python实现)
目录 1. 最长递增序列 2. 最长公共子序列 3. 最长公共子串 1. 最长递增序列 给定一个序列,找出其中最长的,严格递增的子序列的长度(不要求连续). 解法一:动态规划 通过一个辅助数组记录每一 ...
- O(n log n)求最长上升子序列与最长不下降子序列
考虑dp(i)表示新上升子序列第i位数值的最小值.由于dp数组是单调的,所以对于每一个数,我们可以二分出它在dp数组中的位置,然后更新就可以了,最终的答案就是dp数组中第一个出现正无穷的位置. 代码非 ...
- 最长公共子序列PK最长公共子串
1.先科普下最长公共子序列 & 最长公共子串的区别: 找两个字符串的最长公共子串,这个子串要求在原字符串中是连续的.而最长公共子序列则并不要求连续. (1)递归方法求最长公共子序列的长度 1) ...
随机推荐
- MySQL修改root密码教程
1.记得密码但想要更新密码 mysql -uroot -p #使用当前密码登录mysql update MySQL.user set password=PASSWORD('新密码') where Us ...
- 转:Linux环境变量设置方法总结 PATH、LD_LIBRARY_PATH
转: https://www.linuxidc.com/Linux/2017-03/142338.htm 文章写比较全 转载记录 Linux环境变量设置方法总结 PATH.LD_LIBRARY_P ...
- npm node sass 安装报错
报错为 不能找到python2.7,记得曾经已经安装过python,结果npm install cnpm install npm install node-sass 各种不行,结果在cmd 输入pyt ...
- 使用ES6的reduce函数,根据key去重
最近很着迷于ES6的函数,让代码变得更优雅.ES6里的reduce函数,平时用的不是特别多,真正用起来发现还是挺好用的. 想要实现的效果为: 原数组: let rawArr = [{id:'123'} ...
- laravel中db获取某个数据的具体字段值:
$helpfriend = DB::connection('luckyrecord')->table($luckyrecord)->where('id', $luckyrecordid)- ...
- ROS tab键补全操作出现错误
ros tab键补全操作出现错误如下: $ roslaunch sp[rospack] Warning: error while crawling /home/hemudu: boost::files ...
- js 变量的声明能提升 初始化不会提升
var x = 5; // 初始化 x elem = document.getElementById("demo"); // 查找元素 elem.innerHTML = x + & ...
- ssh免密登陆
1:建立新用户hadoop 2:进入/home/hadoop/.ssh/目录 3:所有要免密连接的终端运行: ssh-keygen -t rsa 三次回车后会产生:id_rsa,id_rsa.pub两 ...
- 【重大更新】DevExpress WinForms v18.2新版亮点(七)
买 DevExpress Universal Subscription 免费赠 万元汉化资源包1套! 限量15套!先到先得,送完即止!立即抢购>> 行业领先的.NET界面控件2018年第 ...
- DevExpress v18.1新版亮点——CodeRush for VS篇(一)
用户界面套包DevExpress v18.1日前正式发布,本站将以连载的形式为大家介绍各版本新增内容.本文将介绍了CodeRush for Visual Studio v18.1 的新功能,快来下载试 ...