If $p>1$, $f\geq 0$, and $$\bex F(x)=\int_0^x f(t)\rd t, \eex$$ then $$\bee\label{Hardy:0 to x} \int_0^\infty \sex{\frac{F}{x}}^p\rd x \leq \sex{\frac{p}{p-1}}^p \int_0^\infty f^p\rd x. \eee$$

Proof: $$\beex \bea \int_0^\infty \sex{\frac{F}{x}}^p\rd x &=\frac{1}{1-p} \int_0^\infty F^p \rd x^{1-p}\\ &=-\frac{1}{1-p}\int_0^\infty pF^{p-1} f\cdot x^{1-p}\rd x\\ &=\frac{p}{p-1}\int_0^\infty \sex{\frac{F}{x}}^{p-1}\cdot f\rd x\\ &\leq \frac{p}{p-1}\sex{\int_0^\infty \sex{\frac{F}{x}}^p\rd x}^\frac{p-1}{p} \sex{\int_0^\infty f^p\rd x}^\frac{1}{p}. \eea \eeex$$

If $p>1$, $f\geq 0$, and $$\bex F(x)=\int_x^\infty f(t)\rd t, \eex$$ then $$\bee\label{Hardy:x to infty} \int_0^\infty \sex{\frac{F}{x}}^p\rd x \leq \sex{\frac{p}{p-1}}^p \int_0^\infty f^p\rd x. \eee$$

Proof: $$\beex \bea \int_0^\infty \sex{\frac{F}{x}}^p\rd x &=\frac{1}{1-p} \int_0^\infty F^p \rd (x^{1-p})\\ &=-\frac{1}{1-p}\int_0^\infty pF^{p-1} f\cdot x^{1-p}\rd x\\ &=\frac{p}{p-1}\int_0^\infty \sex{\frac{F}{x}}^{p-1}\cdot f\rd x\\ &\leq \frac{p}{p-1}\sex{\int_0^\infty \sex{\frac{F}{x}}^p\rd x}^\frac{p-1}{p} \sex{\int_0^\infty f^p\rd x}^\frac{1}{p}. \eea \eeex$$

If $p>1$, $r\neq 1$, $f\geq 0$, and $$\bex F(x)=\sedd{\ba{ll} \int_0^x f(t)\rd t,&r>1,\\ \int_x^\infty f(t)\rd t,&r<1, \ea} \eex$$ then $$\bee\label{Hardy:general} \int_0^\infty x^{-r}F^p\rd x \leq \sex{\frac{p}{|r-1|}}^p \int_0^\infty x^{-r} (xf)^p\rd x. \eee$$

Proof: If $r>1$, then $$\beex \bea \int_0^\infty x^{-r}F^p\rd x&=\frac{1}{1-r}\int_0^\infty F^p\rd (x^{1-r})\\ &=-\frac{1}{1-r}\int_0^\infty pF^{p-1} f\cdot x^{1-r}\rd x\\ &=\frac{p}{r-1}\int_0^\infty (x^{-r}F^p)^\frac{p-1}{p} \cdot\sez{x^{-r}(xf)^p}^\frac{1}{p}\rd x\\ &\leq \frac{p}{r-1} \sex{\int_0^\infty x^{-r}F^p\rd x}^\frac{p-1}{p} \sex{\int_0^\infty (xf)^p\rd x}^\frac{1}{p}. \eea \eeex$$

Remark: All the Hardy type inequality requires the non-negativity of the function $f$, so that in the estimates above, the right-hand side could be absorbed into the left-hand side.

[家里蹲大学数学杂志]第432期Hardy type inequalities的更多相关文章

  1. [家里蹲大学数学杂志]第033期稳态可压Navier-Stokes方程弱解的存在性

    1. 方程  考虑 $\bbR^3$ 中有界区域 $\Omega$ 上如下的稳态流动: $$\bee\label{eq} \left\{\ba{ll} \Div(\varrho\bbu)=0,\\ \ ...

  2. [家里蹲大学数学杂志]第047期18 世纪法国数学界的3L

    1 Lagrange---78岁 约瑟夫·拉格朗日, 全名约瑟夫·路易斯·拉格朗日 (Joseph-Louis Lagrange 1735~1813) 法国数学家.物理学家. 1736年1月25日生于 ...

  3. [家里蹲大学数学杂志]第237期Euler公式的美

    1 Euler 公式 $e^{i\pi}+1=0$ (1) 它把 a.  $e:$ 自然对数的底 $\approx 2. 718281828459$ (数分) b.  $i$: 虚数单位 $=\sqr ...

  4. [家里蹲大学数学杂志]第013期2010年西安偏微分方程暑期班试题---NSE,非线性椭圆,平均曲率流,非线性守恒律,拟微分算子

    Navier-Stokes equations 1 Let $\omega$ be a domain in $\bbR^3$, complement of a compact set $\mathca ...

  5. [家里蹲大学数学杂志]第041期中山大学数计学院 2008 级数学与应用数学专业《泛函分析》期末考试试题 A

    1 ( 10 分 ) 设 $\mathcal{X}$ 是 Banach 空间, $f$ 是 $\mathcal{X}$ 上的线性泛函. 求证: $f\in \mathcal{L}(\mathcal{X ...

  6. [家里蹲大学数学杂志]第049期2011年广州偏微分方程暑期班试题---随机PDE-可压NS-几何

    随机偏微分方程 Throughout this section, let $(\Omega, \calF, \calF_t,\ P)$ be a complete filtered probabili ...

  7. [家里蹲大学数学杂志]第053期Legendre变换

    $\bf 题目$. 设 $\calX$ 是一个 $B$ 空间, $f:\calX\to \overline{\bbR}\sex{\equiv \bbR\cap\sed{\infty}}$ 是连续的凸泛 ...

  8. [家里蹲大学数学杂志]第056期Tikhonov 泛函的变分

    设 $\scrX$, $\scrY$ 是 Hilbert 空间, $T\in \scrL(\scrX,\scrY)$, $y_0\in\scrY$, $\alpha>0$. 则 Tikhonov ...

  9. [家里蹲大学数学杂志]第235期$L^p$ 调和函数恒为零

    设 $u$ 是 $\bbR^n$ 上的调和函数, 且 $$\bex \sen{u}_{L^p}=\sex{\int_{\bbR^n}|u(y)|^p\rd y}^{1/p}<\infty. \e ...

随机推荐

  1. NodeJS利用mongoose模糊查询MongoDB

    在Node.js中,直接硬编码可以 Posts.where('title',/答案/); 但是 通过 字符串构造 不行 var qs = '/'+req.query.search+'/'; Posts ...

  2. C++多线程编程入门之经典实例

    多线程在编程中有相当重要的地位,我们在实际开发时或者找工作面试时总能遇到多线程的问题,对多线程的理解程度从一个侧面反映了程序员的编程水平. 其实C++语言本身并没有提供多线程机制,但Windows系统 ...

  3. Windows Server 2003 Sp2 下无法安装SQL Server 2008 Management Studio Express问题

    Windows Server 2003 Sp2 下无法安装SQL Server 2008 Management Studio Express问题钉子 发表于 2010-5-22 1:42:51问题描述 ...

  4. 4、android BroadcastReceiver详细用法

    BroadcastReceiver也就是“广播接收者”的意思,顾名思义,它就是用来接收来自系统和应用中的广播. 在Android系统中,广播体现在方方面面,例如当开机完成后系统会产生一条广播,接收到这 ...

  5. 2014年4月份第1周51Aspx源码发布详情

    基于Extjs4+MVC4权限管理源码  2014-3-31 [VS2012]源码描述: 20140331更新:修改部门管理中bug 20140303更新:增加部门管理模块,主要包含部门添加,编辑,删 ...

  6. poj2502 最短路

    //Accepted 504 KB 16 ms //spfa最短路 //把n个地铁站作为n个顶点,边权为从一个站到另一个站的时间 //注意:地铁在相邻的两站之间是直线行驶,但其他的就不是了 #incl ...

  7. 银光类似web visio的节点连线控件Essential Diagram免费下载地址

    Essential Diagram for Silverlight是一款功能强大的图解拓扑图控件,在XAML支持的情况下提供用户交互式地创建和编辑图解,支持数据绑定和多种布局,可以导出为多种文件格式等 ...

  8. mysql-5.6.17-win32免安装版配置

    下载mysql-5.6.17-win32:官网下载地址百度   解压到自定义目录,我这里演示的是D:\wamp\mysql\   复制根目录下的my-default.ini,改名为my.ini,my. ...

  9. php 无法连接mysql

    sql_connect,sqli_connect, 或new sqli() 无法建立mysql连接 1. php.ini 中 ; extension=php_mysql.dll 和 ; extensi ...

  10. Linux Centos7下安装Python

    1.查看是否已经安装Python Centos7默认安装了python2.7.5 因为一些命令要用它比如yum 它使用的是python2.7.5. 使用python -V命令查看一下是否安装Pytho ...