虚拟机Ubuntu16,caffe环境搭建
虚拟机下的Ubuntu16.04+caffe+onlycup
官网的step很重要,要跟着官网,的步骤来:http://caffe.berkeleyvision.org/installation.html
然后对照:http://blog.csdn.net/firethelife/article/details/51926754
======================【关于注意和报错】===================
-------------------------------------------------------------------------------------
caffe下make 的时候遇到的一些找不到ldhf5之类的错误,则要安装libhdf5,如下解决:
sudo apt-get install libhdf5-dev
-------------------------------------------------------------------------------------
【http://www.linuxidc.com/Linux/2016-07/132860.htm】
首先安装必要的库,有的依赖库我是已经安装过的,具体安装的先后关系已经忘了。如果出现有些依赖关系不满足的错误,可以再安装库:
$ sudo apt-get install build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev # 必要的基本库
根据上面的链接下载OpenCV3.1.0版本,并进行解压,解压之后进入安装文件目录:
$ cd opencv-3.1.0
$ mkdir build #创建build文件夹
$ cd opencv-3.1.0/build
$ cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..
----------------------------------------------------------------------------------
OpenBLAS:
The default directory is /opt/OpenBLAS /*这个是默认安装路径*/
$ git clone https://github.com/xianyi/OpenBLAS.git
【http://www.linuxdiyf.com/linux/15610.html】
则需要安装,安装的步骤如下:
(1)git clone https://github.com/xianyi/OpenBLAS.git
(2)cd OpenBLAS
(3)make FC=gfortran (如果没有安装gfortran,执行sudo apt-get install gfortran)
(4) make install (将OpenBLAS安装到/opt下)
装好后,对应 caffe下Makefile.config修改如下:
# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := open
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
BLAS_INCLUDE := /opt/OpenBLAS/include
BLAS_LIB := /opt/OpenBLAS/lib
-----------------------------------------------------------------------------------
caffe,,,make 的时候会发生一些错误,查看caffe下Makefile.config,修改:
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/
其中:/usr/include/hdf5/serial/是hdf5的位置。
---------------------------------------------------------------------------------------
【http://blog.csdn.net/lanxuecc/article/details/51997919】
runtest时会报一个错::build_release/tools/caffe: error while loading shared libraries: libopenblas.so.0: cannot open shared object file: No such file or directory,解决方法:在/usr/lib/下建立一个 软链接将 libopenblas.so.0指向/openbls安装目录/lib/ libopenblas.so.0
-----\
在/usr/lib/下建立一个 软链接将 libopenblas.so.0指向/openbls安装目录/lib/ libopenblas.so.0
ln -s /opt/OpenBLAS/lib/libopenblas.so.0 /usr/lib/libopenblas.so.0
------------------------------------------------------------------------------------
============= caffe下Makefile.config最终的样子如下
==================
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!
# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1
# CPU-only switch (uncomment to build without GPU support).
CPU_ONLY := 1
# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0
# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1
# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3
# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++
# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr
# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_50,code=compute_50
# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := open
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
BLAS_INCLUDE := /opt/OpenBLAS/include
BLAS_LIB := /opt/OpenBLAS/lib
# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib
# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app
# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := $(HOME)/anaconda2
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
$(ANACONDA_HOME)/include/python2.7 \
$(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \
# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include
# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
#PYTHON_LIB := $(ANACONDA_HOME)/lib
# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib
# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib
# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1
# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1
# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0
# enable pretty build (comment to see full commands)
Q ?= @
-----------------------------------------------------------------------------------------------
感想:在Windows和虚拟机Ubuntu16下都搭好了环境了,好想大声喊一句:鬼知道我这四天经历了什么。。。。幸好你没有放弃!!!
花了2天的时间明白:cuda是英伟达的显卡,而我的机子是【计算机右键-属性-适配器-(最后一项)显示适配器:AMD】AMD的,所以装了cuda进不去Ubuntu的图形界面,在这里开启了各种重装的坎坷路程。。。。整整话了两天啊。。。我的妈呀!!!幸好,坚持了下来!!:)加油。
虚拟机Ubuntu16,caffe环境搭建的更多相关文章
- 基于VGGnet的人脸识别系统-ubuntu 系统下的Caffe环境搭建(CPU)
对于caffe的系统一般使用linux系统,当然也有windows版本的caffe,不过如果你一开始使用了windows下面的caffe,后面学习的过程中,会经常遇到各种错误,网上下载的一些源码.模型 ...
- 从头来之【图解针对虚拟机iOS开发环境搭建】
1.下载Mac OSX10.9. 点击下载 2.下载VMware Workstation 10,点击下载,网页中包含序列号.安装VM. 3.VM10-MacOS补丁.用于创建苹果虚拟机. 安装VM就不 ...
- 虚拟机IOS开发环境搭建教程
来源:http://www.cnblogs.com/xiaoyaoju/archive/2013/05/21/3091171.html 安装条件: 硬件:一台拥有支持虚拟技术的64位双核处理器和2GB ...
- 从头来之【图解针对虚拟机iOS开发环境搭建】 (转)
1.下载Mac OSX10.9. 点击下载 2.下载VMware Workstation 10,点击下载,网页中包含序列号.安装VM. 3.VM10-MacOS补丁.用于创建苹果虚拟机. 安装VM就不 ...
- 【神经网络与深度学习】Win10+VS2015 caffe环境搭建(极其详细)
caffe是好用,可是配置其环境实在是太痛苦了,依赖的库很多不说,在VS上编译还各种报错,你能想象那种被一百多个红色提示所笼罩的恐惧. 且网上很多教程是VS2013环境下编译的,问人很多也说让我把1 ...
- Ubuntu16+pinpoint环境搭建
最近研究了pinpoint,稍后放上环境搭建教程,建议想学习搭建的同学记得参考pinpointGitHub
- windows10下基于docker的bvlc/caffe环境搭建与使用
docker 安装参见docker官网,当cmd出现以下图像时安装正确; 然后进行bvlc/caffe环境创建,有两种,一种是直接pull github的bvlc,一种是本地创建image,直接使用g ...
- 机器学习caffe环境搭建——redhat7.1和caffe的python接口编译
相信看这篇文章的都知道caffe是干嘛的了,无非就是深度学习.神经网络.计算机视觉.人工智能这些,这个我就不多介绍了,下面说说我的安装过程即遇到的问题,当然还有解决方法. 说下我的环境:1>虚拟 ...
- VMware 安装centOS6.4虚拟机以及基础环境搭建
随机推荐
- ASP.NET MVC ActionResult的其它返回值
一.ascx页面 场景:要返回代码片断,比如Ajax返回一个子页 我们先新建一个Action public ActionResult Ascx() { return PartialView(); } ...
- to my friends-Don't give up so fast
早上听到大学挺要好的朋友突然说要换行,心情就一股莫名的哀伤,因为当初是三个人一起约定好的,要朝着我们共同的目标而努力奋斗的,这股热情怎能这么轻易地被现实的冷水浇灭.没错,我们是刚出社会的毛头小子,我们 ...
- PR和VV的分类与区别
Adobe Premiere是一款常用的视频编辑软件,由Adobe公司推出.现在常用的有CS4.CS5.CS6.CC.CC 2014及CC 2015版本.是一款编辑画面质量比较好的软件,有较好的兼容性 ...
- dll的编写和使用
备忘: 1-1: def方式创建:VC6找不到stdafx.h,所以创建空工程,stdafx 里面功能太高端,不用不影响.DLL工程建立好后,新建一CPP文件,叫dlltest.cpp,直接去copy ...
- AngularJs的UI组件ui-Bootstrap分享(二)——Collapse
Collapse折叠控件使用uib-collapse指令 <!DOCTYPE html> <html ng-app="ui.bootstrap.demo" xml ...
- GoldenGate 12.2 支持不可见列invisible column的复制
Oracle Goldengate 12.2现在可以复制不可见列,在以前的版本中是没有此项功能的.示例:在源和目标都创建一个不可见和虚拟列commission SQL> create tabl ...
- SQL.WITH AS.公用表表达式(CTE)
一.WITH AS的含义 WITH AS短语,也叫做子查询部分(subquery factoring),可以让你做很多事情,定义一个SQL片断,该SQL片断会被整个SQL语句所用到.有的时候,是 ...
- js限制文本框只能输入整数或者带小数点[转]
这篇文章是关于js限制文本框只能输入整数或者带小数点的内容,以下就是该内容的详细介绍. 做表单验证的时候是否会碰到验证某个输入框内只能填写数字呢,仅允许输入整数数字或者带小数点的数字.下面这段代码也许 ...
- 视频转gif
如何把视频变成GIF https://shop16541393.koudaitong.com/v2/feature/1x6q09fa?openid=ov0dfwb6-DBFqTzvekSNAjT59U ...
- .NET 强引用和弱引用
一:什么是弱引用 了解弱引用之前,先了解一下什么是强引用 例如 : Object obj=new Object(); 就是一个强引用,内存分配一份空间给用以存储Object数据,这块内存有一个 ...