“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第3章课程讲义下载(PDF)

Summary

  • Addition of matrices
    Two matrices $[A]$ and $[B]$ can be added only if they are the same size. The addition is then shown as $$[C]=[A]+[B]$$ where $$c_{ij}=a_{ij} + b_{ij}$$ For example $$\begin{bmatrix}5& 2& 3\\ 1& 2& 7\end{bmatrix} + \begin{bmatrix}6& 7& -2\\ 3& 5& 19\end{bmatrix}$$ $$= \begin{bmatrix}5 + 6& 2 + 7& 3 - 2\\ 1 + 3& 2 + 5& 7 + 19\end{bmatrix} = \begin{bmatrix}11& 9& 1\\ 4& 7& 26\end{bmatrix}$$
  • Subtraction of matrices
    Two matrices $[A]$ and $[B]$ can be subtracted only if they are the same size. The subtraction is then given by $$[D] = [A]-[B]$$ where $$d_{ij}=a_{ij} - b_{ij}$$ For example $$\begin{bmatrix}5& 2& 3\\ 1& 2& 7\end{bmatrix} - \begin{bmatrix}6& 7& -2\\ 3& 5& 19\end{bmatrix}$$ $$= \begin{bmatrix}5 - 6& 2 - 7& 3 -(-2)\\ 1 - 3& 2 - 5& 7 - 19\end{bmatrix} = \begin{bmatrix}-1& -5& 5\\ -2& -3& -12\end{bmatrix}$$
  • Multiplication of matrices
    Two matrices $[A]$ and $[B]$ can be multiplied only if the number of columns of $[A]$ is equal to the number of rows of $[B]$ to give $$[C]_{m\times n}=[A]_{m\times p}\cdot[B]_{p\times n}$$ where $$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{ip}b_{pj}= \sum_{k=1}^{p}a_{ik}b_{kj}$$ for each $i=1, \cdots, m$ and $j=1, \cdots, n$.
    That is, the $i$-th row and the $j$-th column of $[C]$ is calculated by multiplying the $i$-th row of $[A]$ by the $j$-th column of $[B]$: $$c_{ij}=\begin{bmatrix}a_{i1} & a_{i2}& \cdots & a_{ip}\end{bmatrix}\cdot \begin{bmatrix}b_{1j}\\ b_{2j}\\ \vdots\\ b_{pj}\end{bmatrix}$$ For example, $$A=\begin{bmatrix}5& 2& 3\\ 1& 2& 7\end{bmatrix},\ B=\begin{bmatrix}3& -2\\ 5& -8\\ 9& -10\end{bmatrix},\ C=A\cdot B$$ we have $$c_{11}=\begin{bmatrix}5& 2& 3\end{bmatrix}\cdot \begin{bmatrix}3\\ 5\\ 9\end{bmatrix}=15+10+27=52,\ c_{12}=\begin{bmatrix}5& 2& 3\end{bmatrix}\cdot \begin{bmatrix}-2\\ -8\\ -10\end{bmatrix}=-10 -16 -30 = -56,$$ $$c_{21}=\begin{bmatrix}1& 2& 7\end{bmatrix}\cdot \begin{bmatrix}3\\ 5\\ 9\end{bmatrix}=3+10+63=76,\ c_{22}=\begin{bmatrix}1& 2& 7\end{bmatrix}\cdot \begin{bmatrix}-2\\ -8\\ -10\end{bmatrix}=-2-16-70=-88,$$ $$\Rightarrow C=\begin{bmatrix}52& -56\\ 76& -88\end{bmatrix}.$$
  • Scalar product of matrices
    If $[A]$ is a $m\times n$ matrix and $k$ is a real number, then the multiplication $[A]$ by a scalar $k$ is another $m\times n$ matrix $[B]$, where $b_{ij}=ka_{ij}$ for all $i$, $j$. For example, $$2\cdot\begin{bmatrix}5& 2& 3\\ 1& 2& 7\end{bmatrix} = \begin{bmatrix}10& 4& 6\\ 2& 4& 14\end{bmatrix}$$
  • Linear combination of matrices
    If $[A_1]$, $[A_2]$, $\cdots$, $[A_{p}]$ are matrices of the same size and $k_1$, $k_2$, $\cdots$, $k_p$ are scalars, then $$k_1A_1 + k_2A_2 + \cdots + k_pA_p$$ is called a linear combination of $[A_1]$, $[A_2]$, $\cdots$, $[A_{p}]$.
  • Rules of binary matrix operation
    • Commutative law of addition
      If $[A]$ and $[B]$ are $m\times n$ matrices, then $$[A]+[B] = [B] + [A]$$
    • Associative law of addition
      If $[A]$, $[B]$, and $[C]$ are all $m\times n$ matrices, then $$[A]+([B] + [C]) = ([A] + [B]) + [C]$$
    • Associate law of multiplication
      If $[A]$, $[B]$, and $[C]$ are $m\times n$, $n\times p$, and $p\times r$ size matrices. respectively. Then $$[A]\cdot([B]\cdot[C]) = ([A]\cdot[B])\cdot[C]$$ and the resulting matrix size on both sides of the equation is $m\times r$.
    • Distributive law
      If $[A]$ and $[B]$ are $m\times n$ size matrices, and $[C]$ and $[D]$ are $n\times p$ size matrices, then $$[A]\cdot([C] + [D]) = [A]\cdot[C] + [A]\cdot[D]$$ $$([A] + [B])\cdot[C] = [A]\cdot[C] + [B]\cdot[C]$$ and the resulting matrix size on both sides of the equation is $m\times p$.

Selected Problems

1. For the following matrices $$A=\begin{bmatrix}3& 0\\ -1& 2\\ 1& 1\end{bmatrix},\ B=\begin{bmatrix}4& -1\\ 0& 2\end{bmatrix},\ C=\begin{bmatrix}5& 2\\ 3& 5\\ 6& 7\end{bmatrix}.$$ Find where possible $4[A] + 5[C]$, $[A]\cdot[B]$, $[A]-2[C]$.
Solution:

$$4[A] + 5[C] = \begin{bmatrix}12& 0\\ -4& 8\\ 4& 4\end{bmatrix} + \begin{bmatrix}25& 10\\ 15& 25\\ 30& 35\end{bmatrix} = \begin{bmatrix}37& 10\\ 11& 33\\ 34& 39\end{bmatrix}$$ $$[A] \cdot [B] = \begin{bmatrix}12& -3\\ -4& 5\\ 4& 1\end{bmatrix}$$ $$[A]-2[C] = \begin{bmatrix}3& 0\\ -1& 2\\ 1& 1\end{bmatrix} - \begin{bmatrix}10& 4\\ 6& 10\\ 12& 14\end{bmatrix} = \begin{bmatrix}-7& -4\\ -7& -8\\ -11& -13\end{bmatrix}$$

2. Food orders are taken from two engineering departments for a takeout. The order is tabulated in Table 1.

However they have a choice of buying this food from three different restaurants. Their prices for the three food items are tabulated in Table 2.

Show how much each department will pay for their order at each restaurant. Which restaurant would be more economical to order from for each department?
Solution:
Denote the food order and price matrices as $$[A]=\begin{bmatrix}25& 35& 25\\ 21& 20& 21\end{bmatrix},\ [B]=\begin{bmatrix}2.42 & 2.38 & 2.46\\ 0.93 & 0.90 & 0.89\\ 0.95 & 1.03 & 1.13 \end{bmatrix}$$ The total fees matrix $[C]$ is the product of $[A]$ and $[B]$: $$[C]=[A]\cdot [B] = \begin{bmatrix}116.8 & 116.75 & 120.9\\ 89.37 & 89.61 & 93.19\end{bmatrix}$$ Covert it using tabular is shown in Table 3.

Thus, Burcholestrol is the cheapest for the Mechanocal department, which is 116.75. And MacFat is the cheapest for the Civil department, which is 89.37.

3. Given $$[A] = \begin{bmatrix}2& 3& 5\\ 6& 7& 9\\ 2& 1& 3\end{bmatrix},\ [B]= \begin{bmatrix}3& 5\\ 2& 9\\ 1& 6\end{bmatrix} ,\ [C]= \begin{bmatrix}5& 2\\ 3& 9\\ 7& 6\end{bmatrix}.$$ Illustrate the distributive law of binary matrix operations: $$[A]\cdot([B]+[C]) = [A]\cdot[B] + [A]\cdot[C]$$
Solution:
$$[B]+[C] = \begin{bmatrix}8& 7\\ 5& 18\\ 8& 12\end{bmatrix},\ [A]\cdot([B]+[C]) = \begin{bmatrix}71& 128\\ 155& 276\\ 45& 68\end{bmatrix}$$ $$[A]\cdot [B]=\begin{bmatrix}17& 67\\ 41& 147\\ 11& 37\end{bmatrix},\ [A]\cdot [C] = \begin{bmatrix}54& 61\\ 114& 129\\ 34& 31\end{bmatrix}\, [A]\cdot [B]+[A]\cdot [C]= \begin{bmatrix}71& 128\\ 155& 276\\ 45& 68\end{bmatrix}$$ Thus $$[A]\cdot([B]+[C]) = [A]\cdot[B] + [A]\cdot[C]$$

4. Let $[I]$ be a $n\times n$ identity matrix. Show that $[A]\cdot[I] = [I]\cdot[A]=[A]$ for every $n\times n$ matrix $[A]$.
Solution:
Let $[C]_{n\times n}=[A]_{n\times n}\cdot[I]_{n\times n}$. So we have $$c_{ij}=a_{i1}i_{1j} + \cdots + a_{i, j-1}i_{j-1, j} + a_{ij}i_{jj} + a_{i, j+1}i_{j+1, j}+\cdots + a_{in}i_{nj} = \sum_{p=1}^{n} a_{ip}i_{pj}$$ for each of $i=1, \cdots, n$ and $j=1, \cdots, n$. Since $$i_{ij}=\begin{cases}0 & i\neq j \\ 1 & i=j\end{cases}$$ Thus $$c_{ij} = \sum_{p=1}^{n} a_{ip}i_{pj} = a_{ij}i_{jj} = a_{ij}$$ That is, $[A]\cdot[I] = [A]$.
Similarly, denote $[D]_{n\times n}=[I]_{n\times n}\cdot [A]_{n\times n}$, and $$d_{ij}=i_{i1}a_{1j} + \cdots + i_{i, i-1}a_{i-1, j} + i_{ii}a_{ij} + i_{i, i+1}a_{i+1, j}+\cdots + i_{in}a_{nj} = \sum_{p=1}^{n} i_{ip}a_{pj}$$ Because $i_{ij}=1$ when $i=j$, otherwise $i_{ij}=0$. Thus, $$d_{ij}= \sum_{p=1}^{n} i_{ip}a_{pj} = a_{ij}$$ That is, $[I]\cdot[A]=[A]$.

5. Consider there are only two computer companies in a country. The companies are named Dude and Imac. Each year, company Dude keeps ${1/5}^{th}$ of its customers, while the rest switch to Imac. Each year, Imac keeps ${1/3}^{rd}$ of its customers, while the rest switch to Dude. If in 2002, Dude has ${1/6}^{th}$ of the market and Imac has ${5/6}^{th}$ of the market.
(A) What is the distribution of the customers between the two companies in 2003? Write the answer first as multiplication of two matrices.
(B) What would be distribution when the market becomes stable?
Solution:
(A) Denote $D_n$ and $M_n$ as the market share of Dude and Imac in the $n$-th year, respectively. $$\begin{bmatrix}D_n \\ M_n \end{bmatrix} = \begin{bmatrix}{1\over5} & {2\over3} \\ {4\over5} & {1\over3}\end{bmatrix}\cdot \begin{bmatrix}D_{n-1} \\ M_{n-1} \end{bmatrix}$$ Thus $$\begin{bmatrix}D_{2003} \\ M_{2003} \end{bmatrix} = \begin{bmatrix}{1\over5} & {2\over3} \\ {4\over5} & {1\over3}\end{bmatrix}\cdot \begin{bmatrix}D_{2002} \\ M_{2002} \end{bmatrix} = \begin{bmatrix}{1\over5} & {2\over3} \\ {4\over5} & {1\over3}\end{bmatrix}\cdot \begin{bmatrix}{1\over6} \\ {5\over6} \end{bmatrix}= \begin{bmatrix}{53\over90} \\ {37\over90} \end{bmatrix}$$
(B) The stable system means the market share will not be changed from year to year, that is, $$\begin{cases}D = {1\over5}D+{2\over3}M \\ M = {4\over5}D + {1\over3}M\end{cases}\Rightarrow {4\over5}D-{2\over3}M=0$$ On the other hand, $D + M =1$, thus we have $$\begin{cases}{4\over5}D-{2\over3}M=0\\ D + M =1\end{cases}\Rightarrow\begin{cases}D={5\over11}\\ M={6\over11}\end{cases}$$ Hence the stable market share of Dude and Imac is ${5\over11}$ and ${6\over11}$, respectively.

6. Given $$[A]=\begin{bmatrix}12.3& -12.3& 10.3\\ 11.3& -10.3& -11.3\\ 10.3& -11.3& -12.3\end{bmatrix},\ [B]=\begin{bmatrix}2& 4\\ -5& 6\\ 11& -20\end{bmatrix}$$ if $[C] = [A]\cdot[B]$, then what is $c_{31}$?
Solution:
$$c_{31} = \begin{bmatrix}10.3& -11.3& -12.3\end{bmatrix} \cdot \begin{bmatrix}2\\-5\\11\end{bmatrix} = 10.3\times2+11.3\times5-12.3\times11 = -58.2$$

7. $[A]$ and $[B]$ are square matrices of $n\times n$ order. Then $([A] - [B])([A] - [B])$ is equal to ( ).
Solution:
$$([A]-[B])([A]-[B]) = [A]([A]-[B])-[B]([A]-[B])=[A]^2-[A][B]-[B][A]+[B]^2$$ Note that $[A][B]$ and $[B][A]$ is not equal to each other unless $[A][B]=[B][A]$.

8. Given $[A]$ is a rectangular matrix and $c[A]=0$, then what are the values of $c$ and $[A]$?
Solution:
$c[A]=0\Rightarrow c=0$ or $[A]=[0]$.

9. You sell Jupiter and Fickers Candy bars. The sales in January are 25 and 30 of Jupiter and Fickers, respectively. In February, the sales are 75 and 35 of Jupiter and Fickers, respectively. If a Jupiter bar costs 2 dollars and a Fickers bar costs 7 dollars, then what is the total sales amount in each month?
Solution:
$$\begin{bmatrix}25& 30\\ 75& 35\end{bmatrix}\cdot\begin{bmatrix} 2 \\ 7 \end{bmatrix} =\begin{bmatrix} 260 \\ 395 \end{bmatrix} $$ Thus, the total sales amount in January and February are 260 dollars and 395 dollars, respectively.

A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations的更多相关文章

  1. A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  2. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  4. A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  5. A.Kaw矩阵代数初步学习笔记 7. LU Decomposition

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. A.Kaw矩阵代数初步学习笔记 5. System of Equations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  8. A.Kaw矩阵代数初步学习笔记 2. Vectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. A.Kaw矩阵代数初步学习笔记 1. Introduction

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

随机推荐

  1. Tomcat 项目部署方式

    方法一:在Tomcat中的Conf目录中,在Server.Xml中的,<Host/>节点中添加: <Context Path="/Hello"Docbase=&q ...

  2. 如何把自己打造成技术圈的 papi 酱

    最近半年,一个叫papi酱的平胸女子连续在微博.朋友圈.创业圈刷屏,当之无愧成了中文互联网的第一大网红.呃,你以为我会巴拉巴拉说一堆网工创业的事?NO,今天想借papi酱的话题跟大家一起聊聊程序员如何 ...

  3. 各地IT薪资待遇讨论

    作为一个搞.net开发的程序员,在北京混了三年半,最近准备辞职到上海找工作.由于对上海的IT行业还不是很了解,在这里想让上海的同行们说下你们的情况,以方便我对自己在上海的定位,当然,其余城市的的同行们 ...

  4. Bootstrap系列 -- 12. 水平表单

    Bootstrap框架默认的表单是垂直显示风格,但很多时候我们需要的水平表单风格(标签居左,表单控件居右) 在Bootstrap框架中要实现水平表单效果,必须满足以下两个条件: 1.在<form ...

  5. java发送邮件

    1.需要用到javax.mail怎么下载呢?百度javax.mail就会看见http://www.oracle.com/technetwork/java/index-138643.html实际上这个项 ...

  6. eclipse技巧总结

       如果遇到错误或警告,先试试统一的方法:在problems view中,右键error或者warnning,选择quick fix serial ID并不常用,如果不实现它,eclipse会给出一 ...

  7. SQL-Server下载地址

    有同学费尽心思的找SQL server数据库各版本的下载地址,看到别人的求助贴就不自觉的想去帮助他们,但是一个一个去帮助又不太现实,毕竟个人精力有限,既然大家有需求,那么艾薇百科今天就本着乐于分享和奉 ...

  8. C# EventHandler and Delegate(委托的使用)

    委托的声明 public delegate void MyDelegate(string str); 注 1.委托的定义和方法的定义类似,只是在前面加了一个delegate,但委托不是方法,它是一种特 ...

  9. The hierarchy of the type NsRedisConnectionFactory is inconsistent

    The hierarchy of the type is inconsistent 解释为:层次结构的类型不一致 由于我在eclipse里建了两个JAVA PROJECT项目,分别是A projiec ...

  10. Error: [ng:areq]

    错误描述:Error: [ng:areq] http://errors.angularjs.org/1.4.8/ng/areq?p0=HelloCtrl&p1=not%20a%20functi ...