A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第3章课程讲义下载(PDF)
Summary
- Addition of matrices
Two matrices $[A]$ and $[B]$ can be added only if they are the same size. The addition is then shown as $$[C]=[A]+[B]$$ where $$c_{ij}=a_{ij} + b_{ij}$$ For example $$\begin{bmatrix}5& 2& 3\\ 1& 2& 7\end{bmatrix} + \begin{bmatrix}6& 7& -2\\ 3& 5& 19\end{bmatrix}$$ $$= \begin{bmatrix}5 + 6& 2 + 7& 3 - 2\\ 1 + 3& 2 + 5& 7 + 19\end{bmatrix} = \begin{bmatrix}11& 9& 1\\ 4& 7& 26\end{bmatrix}$$ - Subtraction of matrices
Two matrices $[A]$ and $[B]$ can be subtracted only if they are the same size. The subtraction is then given by $$[D] = [A]-[B]$$ where $$d_{ij}=a_{ij} - b_{ij}$$ For example $$\begin{bmatrix}5& 2& 3\\ 1& 2& 7\end{bmatrix} - \begin{bmatrix}6& 7& -2\\ 3& 5& 19\end{bmatrix}$$ $$= \begin{bmatrix}5 - 6& 2 - 7& 3 -(-2)\\ 1 - 3& 2 - 5& 7 - 19\end{bmatrix} = \begin{bmatrix}-1& -5& 5\\ -2& -3& -12\end{bmatrix}$$ - Multiplication of matrices
Two matrices $[A]$ and $[B]$ can be multiplied only if the number of columns of $[A]$ is equal to the number of rows of $[B]$ to give $$[C]_{m\times n}=[A]_{m\times p}\cdot[B]_{p\times n}$$ where $$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{ip}b_{pj}= \sum_{k=1}^{p}a_{ik}b_{kj}$$ for each $i=1, \cdots, m$ and $j=1, \cdots, n$.
That is, the $i$-th row and the $j$-th column of $[C]$ is calculated by multiplying the $i$-th row of $[A]$ by the $j$-th column of $[B]$: $$c_{ij}=\begin{bmatrix}a_{i1} & a_{i2}& \cdots & a_{ip}\end{bmatrix}\cdot \begin{bmatrix}b_{1j}\\ b_{2j}\\ \vdots\\ b_{pj}\end{bmatrix}$$ For example, $$A=\begin{bmatrix}5& 2& 3\\ 1& 2& 7\end{bmatrix},\ B=\begin{bmatrix}3& -2\\ 5& -8\\ 9& -10\end{bmatrix},\ C=A\cdot B$$ we have $$c_{11}=\begin{bmatrix}5& 2& 3\end{bmatrix}\cdot \begin{bmatrix}3\\ 5\\ 9\end{bmatrix}=15+10+27=52,\ c_{12}=\begin{bmatrix}5& 2& 3\end{bmatrix}\cdot \begin{bmatrix}-2\\ -8\\ -10\end{bmatrix}=-10 -16 -30 = -56,$$ $$c_{21}=\begin{bmatrix}1& 2& 7\end{bmatrix}\cdot \begin{bmatrix}3\\ 5\\ 9\end{bmatrix}=3+10+63=76,\ c_{22}=\begin{bmatrix}1& 2& 7\end{bmatrix}\cdot \begin{bmatrix}-2\\ -8\\ -10\end{bmatrix}=-2-16-70=-88,$$ $$\Rightarrow C=\begin{bmatrix}52& -56\\ 76& -88\end{bmatrix}.$$ - Scalar product of matrices
If $[A]$ is a $m\times n$ matrix and $k$ is a real number, then the multiplication $[A]$ by a scalar $k$ is another $m\times n$ matrix $[B]$, where $b_{ij}=ka_{ij}$ for all $i$, $j$. For example, $$2\cdot\begin{bmatrix}5& 2& 3\\ 1& 2& 7\end{bmatrix} = \begin{bmatrix}10& 4& 6\\ 2& 4& 14\end{bmatrix}$$ - Linear combination of matrices
If $[A_1]$, $[A_2]$, $\cdots$, $[A_{p}]$ are matrices of the same size and $k_1$, $k_2$, $\cdots$, $k_p$ are scalars, then $$k_1A_1 + k_2A_2 + \cdots + k_pA_p$$ is called a linear combination of $[A_1]$, $[A_2]$, $\cdots$, $[A_{p}]$. - Rules of binary matrix operation
- Commutative law of addition
If $[A]$ and $[B]$ are $m\times n$ matrices, then $$[A]+[B] = [B] + [A]$$ - Associative law of addition
If $[A]$, $[B]$, and $[C]$ are all $m\times n$ matrices, then $$[A]+([B] + [C]) = ([A] + [B]) + [C]$$ - Associate law of multiplication
If $[A]$, $[B]$, and $[C]$ are $m\times n$, $n\times p$, and $p\times r$ size matrices. respectively. Then $$[A]\cdot([B]\cdot[C]) = ([A]\cdot[B])\cdot[C]$$ and the resulting matrix size on both sides of the equation is $m\times r$. - Distributive law
If $[A]$ and $[B]$ are $m\times n$ size matrices, and $[C]$ and $[D]$ are $n\times p$ size matrices, then $$[A]\cdot([C] + [D]) = [A]\cdot[C] + [A]\cdot[D]$$ $$([A] + [B])\cdot[C] = [A]\cdot[C] + [B]\cdot[C]$$ and the resulting matrix size on both sides of the equation is $m\times p$.
- Commutative law of addition
Selected Problems
1. For the following matrices $$A=\begin{bmatrix}3& 0\\ -1& 2\\ 1& 1\end{bmatrix},\ B=\begin{bmatrix}4& -1\\ 0& 2\end{bmatrix},\ C=\begin{bmatrix}5& 2\\ 3& 5\\ 6& 7\end{bmatrix}.$$ Find where possible $4[A] + 5[C]$, $[A]\cdot[B]$, $[A]-2[C]$.
Solution:
$$4[A] + 5[C] = \begin{bmatrix}12& 0\\ -4& 8\\ 4& 4\end{bmatrix} + \begin{bmatrix}25& 10\\ 15& 25\\ 30& 35\end{bmatrix} = \begin{bmatrix}37& 10\\ 11& 33\\ 34& 39\end{bmatrix}$$ $$[A] \cdot [B] = \begin{bmatrix}12& -3\\ -4& 5\\ 4& 1\end{bmatrix}$$ $$[A]-2[C] = \begin{bmatrix}3& 0\\ -1& 2\\ 1& 1\end{bmatrix} - \begin{bmatrix}10& 4\\ 6& 10\\ 12& 14\end{bmatrix} = \begin{bmatrix}-7& -4\\ -7& -8\\ -11& -13\end{bmatrix}$$
2. Food orders are taken from two engineering departments for a takeout. The order is tabulated in Table 1.

However they have a choice of buying this food from three different restaurants. Their prices for the three food items are tabulated in Table 2.

Show how much each department will pay for their order at each restaurant. Which restaurant would be more economical to order from for each department?
Solution:
Denote the food order and price matrices as $$[A]=\begin{bmatrix}25& 35& 25\\ 21& 20& 21\end{bmatrix},\ [B]=\begin{bmatrix}2.42 & 2.38 & 2.46\\ 0.93 & 0.90 & 0.89\\ 0.95 & 1.03 & 1.13 \end{bmatrix}$$ The total fees matrix $[C]$ is the product of $[A]$ and $[B]$: $$[C]=[A]\cdot [B] = \begin{bmatrix}116.8 & 116.75 & 120.9\\ 89.37 & 89.61 & 93.19\end{bmatrix}$$ Covert it using tabular is shown in Table 3.

Thus, Burcholestrol is the cheapest for the Mechanocal department, which is 116.75. And MacFat is the cheapest for the Civil department, which is 89.37.
3. Given $$[A] = \begin{bmatrix}2& 3& 5\\ 6& 7& 9\\ 2& 1& 3\end{bmatrix},\ [B]= \begin{bmatrix}3& 5\\ 2& 9\\ 1& 6\end{bmatrix} ,\ [C]= \begin{bmatrix}5& 2\\ 3& 9\\ 7& 6\end{bmatrix}.$$ Illustrate the distributive law of binary matrix operations: $$[A]\cdot([B]+[C]) = [A]\cdot[B] + [A]\cdot[C]$$
Solution:
$$[B]+[C] = \begin{bmatrix}8& 7\\ 5& 18\\ 8& 12\end{bmatrix},\ [A]\cdot([B]+[C]) = \begin{bmatrix}71& 128\\ 155& 276\\ 45& 68\end{bmatrix}$$ $$[A]\cdot [B]=\begin{bmatrix}17& 67\\ 41& 147\\ 11& 37\end{bmatrix},\ [A]\cdot [C] = \begin{bmatrix}54& 61\\ 114& 129\\ 34& 31\end{bmatrix}\, [A]\cdot [B]+[A]\cdot [C]= \begin{bmatrix}71& 128\\ 155& 276\\ 45& 68\end{bmatrix}$$ Thus $$[A]\cdot([B]+[C]) = [A]\cdot[B] + [A]\cdot[C]$$
4. Let $[I]$ be a $n\times n$ identity matrix. Show that $[A]\cdot[I] = [I]\cdot[A]=[A]$ for every $n\times n$ matrix $[A]$.
Solution:
Let $[C]_{n\times n}=[A]_{n\times n}\cdot[I]_{n\times n}$. So we have $$c_{ij}=a_{i1}i_{1j} + \cdots + a_{i, j-1}i_{j-1, j} + a_{ij}i_{jj} + a_{i, j+1}i_{j+1, j}+\cdots + a_{in}i_{nj} = \sum_{p=1}^{n} a_{ip}i_{pj}$$ for each of $i=1, \cdots, n$ and $j=1, \cdots, n$. Since $$i_{ij}=\begin{cases}0 & i\neq j \\ 1 & i=j\end{cases}$$ Thus $$c_{ij} = \sum_{p=1}^{n} a_{ip}i_{pj} = a_{ij}i_{jj} = a_{ij}$$ That is, $[A]\cdot[I] = [A]$.
Similarly, denote $[D]_{n\times n}=[I]_{n\times n}\cdot [A]_{n\times n}$, and $$d_{ij}=i_{i1}a_{1j} + \cdots + i_{i, i-1}a_{i-1, j} + i_{ii}a_{ij} + i_{i, i+1}a_{i+1, j}+\cdots + i_{in}a_{nj} = \sum_{p=1}^{n} i_{ip}a_{pj}$$ Because $i_{ij}=1$ when $i=j$, otherwise $i_{ij}=0$. Thus, $$d_{ij}= \sum_{p=1}^{n} i_{ip}a_{pj} = a_{ij}$$ That is, $[I]\cdot[A]=[A]$.
5. Consider there are only two computer companies in a country. The companies are named Dude and Imac. Each year, company Dude keeps ${1/5}^{th}$ of its customers, while the rest switch to Imac. Each year, Imac keeps ${1/3}^{rd}$ of its customers, while the rest switch to Dude. If in 2002, Dude has ${1/6}^{th}$ of the market and Imac has ${5/6}^{th}$ of the market.
(A) What is the distribution of the customers between the two companies in 2003? Write the answer first as multiplication of two matrices.
(B) What would be distribution when the market becomes stable?
Solution:
(A) Denote $D_n$ and $M_n$ as the market share of Dude and Imac in the $n$-th year, respectively. $$\begin{bmatrix}D_n \\ M_n \end{bmatrix} = \begin{bmatrix}{1\over5} & {2\over3} \\ {4\over5} & {1\over3}\end{bmatrix}\cdot \begin{bmatrix}D_{n-1} \\ M_{n-1} \end{bmatrix}$$ Thus $$\begin{bmatrix}D_{2003} \\ M_{2003} \end{bmatrix} = \begin{bmatrix}{1\over5} & {2\over3} \\ {4\over5} & {1\over3}\end{bmatrix}\cdot \begin{bmatrix}D_{2002} \\ M_{2002} \end{bmatrix} = \begin{bmatrix}{1\over5} & {2\over3} \\ {4\over5} & {1\over3}\end{bmatrix}\cdot \begin{bmatrix}{1\over6} \\ {5\over6} \end{bmatrix}= \begin{bmatrix}{53\over90} \\ {37\over90} \end{bmatrix}$$
(B) The stable system means the market share will not be changed from year to year, that is, $$\begin{cases}D = {1\over5}D+{2\over3}M \\ M = {4\over5}D + {1\over3}M\end{cases}\Rightarrow {4\over5}D-{2\over3}M=0$$ On the other hand, $D + M =1$, thus we have $$\begin{cases}{4\over5}D-{2\over3}M=0\\ D + M =1\end{cases}\Rightarrow\begin{cases}D={5\over11}\\ M={6\over11}\end{cases}$$ Hence the stable market share of Dude and Imac is ${5\over11}$ and ${6\over11}$, respectively.
6. Given $$[A]=\begin{bmatrix}12.3& -12.3& 10.3\\ 11.3& -10.3& -11.3\\ 10.3& -11.3& -12.3\end{bmatrix},\ [B]=\begin{bmatrix}2& 4\\ -5& 6\\ 11& -20\end{bmatrix}$$ if $[C] = [A]\cdot[B]$, then what is $c_{31}$?
Solution:
$$c_{31} = \begin{bmatrix}10.3& -11.3& -12.3\end{bmatrix} \cdot \begin{bmatrix}2\\-5\\11\end{bmatrix} = 10.3\times2+11.3\times5-12.3\times11 = -58.2$$
7. $[A]$ and $[B]$ are square matrices of $n\times n$ order. Then $([A] - [B])([A] - [B])$ is equal to ( ).
Solution:
$$([A]-[B])([A]-[B]) = [A]([A]-[B])-[B]([A]-[B])=[A]^2-[A][B]-[B][A]+[B]^2$$ Note that $[A][B]$ and $[B][A]$ is not equal to each other unless $[A][B]=[B][A]$.
8. Given $[A]$ is a rectangular matrix and $c[A]=0$, then what are the values of $c$ and $[A]$?
Solution:
$c[A]=0\Rightarrow c=0$ or $[A]=[0]$.
9. You sell Jupiter and Fickers Candy bars. The sales in January are 25 and 30 of Jupiter and Fickers, respectively. In February, the sales are 75 and 35 of Jupiter and Fickers, respectively. If a Jupiter bar costs 2 dollars and a Fickers bar costs 7 dollars, then what is the total sales amount in each month?
Solution:
$$\begin{bmatrix}25& 30\\ 75& 35\end{bmatrix}\cdot\begin{bmatrix} 2 \\ 7 \end{bmatrix} =\begin{bmatrix} 260 \\ 395 \end{bmatrix} $$ Thus, the total sales amount in January and February are 260 dollars and 395 dollars, respectively.
A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations的更多相关文章
- A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 7. LU Decomposition
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 5. System of Equations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 2. Vectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 1. Introduction
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
随机推荐
- Caffe学习系列(3):视觉层(Vision Layers)及参数
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...
- LiveSDK初始化/登录时失败的解决办法
环境描述 Windows 8.1+VS 2013 Update3+Live SDK 5.6 Metro风格的程序,集成LIVE认证 问题描述 如下图,提示Null Reference的异常. 解决办法 ...
- javascript位置相关知识点整理
1.css指定元素的位置采用的是文档坐标: 2.js查询元素位置的方法返回的是元素在视口中的位置,即视口坐标: 如何获得元素的位置和尺寸 获得元素的位置和尺寸可以通过getBoundingClient ...
- 【Zeyphr】保存json到数据库
方法一: public int SaveJob(JObject data) { var formWrapper = RequestWrapper.Instance().LoadSettingXmlSt ...
- 十天冲刺---Day4
站立式会议 站立式会议内容总结: git上Issues新增内容: 燃尽图 照片 队伍度过了一次难关,刚开始学习的难关. 但还是存在进度较慢的问题. 队伍内相互理解是关键. 要时刻了解队友的情况.
- oracle如何获取每个月的最后一天
SELECT LAST_DAY(DATE'2016-09-23') FROM DUAL;
- 可以ping通,但是不能connect
实测有效的解决方法: 通过minicom串口连接板子: su stop adbd start adbd 如果再不行,就在终端输入 adb kill-server adb start-server 参考 ...
- Struts2进行url重写
一般来说我们在用Struts2进行开发的时候我们的访问url都是带上一些类似于.action或者.do还有用?传递参数,这种访问方式与静态页面的访问相比,我就可以用一些开源的组件来进行url的重写,以 ...
- 不停止MySQL服务的情况下修改root的密码
首先我们得知道一个MySQL普通用户的密码 这里我来记录一下我的操作过程 这里我刚刚到一家公司上面装的是cacti,但是之前的运维不记得MySQL的root密码了 但是他知道cacti的密码, 用户: ...
- Swift基础--通知,代理和block的使用抉择以及Swift中的代理
什么时候用通知,什么时候用代理,什么时候用block 通知 : 两者关系层次太深,八竿子打不着的那种最适合用通知.因为层级结构深了,用代理要一层一层往下传递,代码结构就复杂了 代理 : 父子关系,监听 ...