1010: [HNOI2008]玩具装箱toy

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 8432  Solved: 3338
[Submit][Status][Discuss]

Description

P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.

Input

第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1

HINT

Source

Solution

DP + 斜率优化

先考虑正常的转移 $dp[i]=min(dp[i],dp[j]+(i-j-1+sum[i]-sum[j]-L)^2)$

复杂度不符合,那么考虑斜率优化

首先设$sumc[i]=sum[i]+i$ 转移方程可以化作 $dp[i]=min(dp[i],dp[j]+(sumc[i]-sumc[j]-L-1)^2)$

那么可以开始化简$dp[k]+(sumc[i]-sumc[k]-L-1)^2<=dp[j]+(sumc[i]-sumc[j]-L-1)^2$

最后化简出$(dp[k]-dp[j]+pf(sumc[k]+L+1)-pf(sumc[j]+L+1))/(2*(sumc[k]-sumc[j]))<sumc[i]$

那么$sumc[]$是单调递增的,单调队列维护下凸包,就可以做了

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 50010
int n,L; int c[maxn]; int que[maxn],l,r;
long long dp[maxn],sumc[maxn];
long long pf(long long x) {return x*x;}
double slope(int i,int j)
{
double fz=dp[j]-dp[i]+pf(sumc[j]+L+)-pf(sumc[i]+L+);
double fm=*(sumc[j]-sumc[i]);
return fz/fm;
}
int main()
{
n=read(),L=read();
for (int i=; i<=n; i++) c[i]=read(),sumc[i]=sumc[i-]+c[i];
for (int i=; i<=n; i++) sumc[i]+=i;
for (int tmp,i=; i<=n; i++)
{
while (l<r && slope(que[l],que[l+])<sumc[i]) l++;
tmp=que[l];
dp[i]=dp[tmp]+pf(sumc[i]-sumc[tmp]-L-);
while (l<r && slope(que[r],i)<slope(que[r-],que[r])) r--;
que[++r]=i;
}
printf("%lld\n",dp[n]);
return ;
}

这么写常数会很大...

【BZOJ-1010】玩具装箱toy DP + 斜率优化的更多相关文章

  1. BZOJ 1010 玩具装箱toy(斜率优化DP)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他 ...

  2. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  3. [HNOI2008]玩具装箱TOY --- DP + 斜率优化 / 决策单调性

    [HNOI2008]玩具装箱TOY 题目描述: P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京. 他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器 ...

  4. BZOJ.1010.[HNOI2008]玩具装箱toy(DP 斜率优化/单调队列 决策单调性)

    题目链接 斜率优化 不说了 网上很多 这的比较详细->Click Here or Here //1700kb 60ms #include<cstdio> #include<cc ...

  5. 1010: [HNOI2008]玩具装箱toy [dp][斜率优化]

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  6. BZOJ1010: [HNOI2008]玩具装箱toy(dp+斜率优化)

    Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 12451  Solved: 5407[Submit][Status][Discuss] Descript ...

  7. 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9330  Solved: 3739 Descriptio ...

  8. 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 12280  Solved: 5277[Submit][S ...

  9. [HNOI2008]玩具装箱toy(斜率优化dp)

    前言 这是我写的第一道$dp$斜率优化的题目,$dp$一直都很菜,而且咖啡鸡都说了这是基础的东西,然而看别人对$dp$斜率优化一大堆公式又看不懂就老老实实做几道题目,这个比较实在 描述 给出$n$和$ ...

随机推荐

  1. ubuntu Apache 2命令

    Task: Start Apache 2 Server /启动apache服务# /etc/init.d/apache2 startor$ sudo /etc/init.d/apache2 start ...

  2. C# Math类简介

    Math.abs() 计算绝对值. Math.acos() 计算反余弦值. Math.asin() 计算反正弦值. Math.atan() 计算反正切值. Math.atan2() 计算从x 坐标轴到 ...

  3. NOI2018准备 Day9

    tjvj清北入学测试又打了一上午,暴力搜索得了部分分,dp全崩了,8道题凑了500分. 下午打了个速度赛,成绩未知,另外又做了1道题,这效率low到爆!!!

  4. 记 FineUI 官方论坛所遭受的一次真实网络攻击!做一个像 ice 有道德的黑客!

    在开始正文之前,请帮忙为当前 排名前 10 唯一的 .Net 开源软件 FineUI  投一票: 投票地址: https://code.csdn.net/2013OSSurvey/gitop/code ...

  5. 动手开发自己的第一个 composer 包

    原文:http://blog.jayxhj.com/2016/05/basic-composer-package-development/ composer 是 PHP 的依赖管理工具,本篇文章就来说 ...

  6. 深入理解OOP(二):多态和继承(继承)

    本文是深入浅出OOP第二篇,主要说说继承的话题. 深入理解OOP(一):多态和继承(初期绑定和编译时多态) 深入理解OOP(二):多态和继承(继承) 深入理解OOP(三):多态和继承(动态绑定和运行时 ...

  7. 如何快速从一个Storage Account拷贝到另一个账号

    当您有两个Storage Account的时候,怎样快速做到从一个账号拷贝到另一个账号呢.当拷贝的文件比较,例如100多G(VHD文件). http://code.msdn.microsoft.com ...

  8. sFlow

    http://www.sflow.org/developers/specifications.php http://www.inmon.com/technology/index.php sFlow s ...

  9. python表达式操作符【学习python必知必会】

    运算符 描述 实例 yield x 生成器函数发送协议   lambda args: expression 生成匿名函数   x if y else z 三元选择表达式(c系列有的 python也要有 ...

  10. 【Spring3.0系列】---Bean不同配置方式比较 和适用场合

    Bean不同配置方式比较1.基于XML配置定义:在XML文件中通过<bean>元素定义Bean,例如<bean class="com.bbt.UserDao"/& ...