【BZOJ-1923】外星千足虫 高斯消元 + xor方程组
1923: [Sdoi2010]外星千足虫
Time Limit: 10 Sec Memory Limit: 64 MB
Submit:
766 Solved: 485
[Submit][Status][Discuss]
Description
Input
这M次使用“点足机”的统计结果。每行包含一个“01”串和一个数字,用一个空格隔开。“01”串按位依次表示每只虫子是否被放入机器:如果第 i
个字符是“0”则代表编号为 i 的虫子未被放入,“1” 则代表已被放入。后面跟的数字是统计的昆虫足数 mod 2 的结果。 由于
NASA的实验机器精确无误,保证前后数据不会自相矛盾。即给定数据一定有解。
Output
行依次回答每只千足虫的身份,若是奇数条足则输出“?y7M#”(火星文),偶数条足输出“Earth”。如果输入数据存在多解,输出“Cannot
Determine”。 所有输出均不含引号,输出时请注意大小写。
Sample Input
011 1
110 1
101 0
111 1
010 1
Sample Output
Earth
?y7M#
Earth
HINT
对于 20%的数据,满足 N=M≤20;
对于 40%的数据,满足 N=M≤500;
对于 70%的数据,满足
N≤500,M≤1,000;
对于 100%的数据,满足 N≤1,000,M≤2,000。
==========================================================
请不要提交!
Source
Solution
题目描述非常清晰,就是给出一些方程,解方程组
一般解方程类型的题目通用的方式:高斯消元硬解/转化模型利用最短路/转化模型利用网络流
后面两种并没怎么接触过,所以这里只能考虑高斯消元硬解,把解一般方程组改成异或就好了..
这里学习了bitset的部分技巧,其实还不是很熟练,以后再看看bitset
Code
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<bitset>
#include<cstring>
#include<cstdlib>
using namespace std;
bitset <> A[];
int B[],n,m,ans;
char s[];
int Gauss()
{
for (int i=; i<=n; i++)
{
int j=i;
while (j<=m && !A[j][i]) j++;
if (j==m+) return ;
ans=max(ans,j);
swap(A[i],A[j]);
for (int k=; k<=m; k++)
if (i!=k && A[k][i])
A[k]^=A[i];
}
return ;
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=; i<=m; i++)
{
scanf("%s%d",s,&B[i]);
for (int j=; j<=n-; j++) A[i][j+]=s[j]-'';
A[i][n+]=B[i];
}
int OK=Gauss();
if (!OK) {puts("Cannot Determine"); return ;}
printf("%d\n",ans);
for (int i=; i<=n; i++)
if (A[i][n+]) puts("?y7M#");
else puts("Earth");
return ;
}
【BZOJ-1923】外星千足虫 高斯消元 + xor方程组的更多相关文章
- BZOJ 1923: [Sdoi2010]外星千足虫 [高斯消元XOR]
1923: [Sdoi2010]外星千足虫 对于 100%的数据,满足 N≤1,000,M≤2,000. 裸高斯消元解异或方程组 给定方程顺序要求用从上到下最少的方程,那么找主元时记录一下最远找到哪个 ...
- BZOJ.1923.[SDOI2010]外星千足虫(高斯消元 异或方程组 bitset)
题目链接 m个方程,n个未知量,求解异或方程组. 复杂度比较高,需要借助bitset压位. 感觉自己以前写的(异或)高斯消元是假的..而且黄学长的写法都不需要回代. //1100kb 324ms #i ...
- BZOJ 1923: [Sdoi2010]外星千足虫 高斯消元+bitset
高斯消元求解异或方程组,可以多学一下 $bitset$ 在位运算中的各种神奇操作. #include <cstdio> #include <bitset> #define N ...
- P2447 [SDOI2010]外星千足虫 (高斯消元)
题目 P2447 [SDOI2010]外星千足虫 解析 sol写到自闭,用文字描述描述了半个小时没描述出来,果然还是要好好学语文 用高斯消元求解异或方程组. 因为 \(奇数\bigoplus奇数=偶数 ...
- 【BZOJ1923】[Sdoi2010]外星千足虫 高斯消元
[BZOJ1923][Sdoi2010]外星千足虫 Description Input 第一行是两个正整数 N, M. 接下来 M行,按顺序给出 Charles 这M次使用“点足机”的统计结果.每行 ...
- BZOJ1923:[SDOI2010]外星千足虫(高斯消元)
Description Input 第一行是两个正整数 N, M. 接下来 M行,按顺序给出 Charles 这M次使用“点足机”的统计结果.每行 包含一个“01”串和一个数字,用一个空格隔开.“01 ...
- [bzoj1923]外星千足虫[高斯消元]
高斯消元解异或方程组 #include <iostream> #include <algorithm> #include <cstdio> #include < ...
- LG2447/BZOJ1923 「SDOI2010」外星千足虫 高斯消元
问题描述 LG2447 BZOJ1923 题解 显然是一个高斯消元,但是求的东西比较奇怪 发现这个方程组只关心奇偶性,于是可以用一个\(\mathrm{bitset}\)进行优化,用xor来进行消元操 ...
- Luogu P2447 [SDOI2010]外星千足虫 高斯消元
链接 给出的条件是异或类型的方程,可以直接用bitset优化高斯消元. 至于求K,在高斯消元时记录用到的最大的方程的编号即可. 代码: // luogu-judger-enable-o2 #inclu ...
随机推荐
- Centos6 安装 Redis
先确认gcc和tcl已经安装 sudo yum install gcc-c++ sudo yum install tcl 解压, 编译和安装 .tar.gz /usr/src/ cd /usr/src ...
- Centos6 修改max user processes limits
ulimit:显示(或设置)用户可以使用的资源的限制(limit),这限制分为软限制(当前限制)和硬限制(上限),其中硬限制是软限制的上限值,应用程序在运行过程中使用的系统资源不超过相应的软限制,任何 ...
- 转:如何在32位程序中突破地址空间4G的限制
//如何在32位程序中突破地址空间4G的限制 //首先要获得内存中锁定页的权限 #define _WIN32_WINNT 0x0501 //xp系统 #include <windows.h> ...
- codevs 3369 膜拜
3369 膜拜 http://codevs.cn/problem/3369/ 题目描述 Description 神牛有很多-当然-每个同学都有自己衷心膜拜的神牛.某学校有两位神牛,神牛甲和神牛乙.新入 ...
- 利用performance属性查看网页性能
一般我们可以通过浏览器的调试工具-网络面板,或者代理工具查看网页加载过程中的各个阶段的耗时.而利用window.performance属性则可以获得更为精确的原始数据,以毫秒为单位,精确到微秒. pe ...
- lecture16-联合模型、分层坐标系、超参数优化及本课未来的探讨
这是HInton的第16课,也是最后一课. 一.学习一个图像和标题的联合模型 在这部分,会介绍一些最近的在学习标题和描述图片的特征向量的联合模型上面的工作.在之前的lecture中,介绍了如何从图像中 ...
- 你误解 .net 了吗?
我现在发现很多人对C#还存在很大的误解,例如C#是完全封闭的,C#不能跨平台,C#性能很差,C#不支持指针等等,持以上观点的人非常多,甚至最近看到的国内某机构对开发语言的统计中还写着C#不跨平台,不开 ...
- .net程序员转行做手游开发经历(五)
大家好,真的是好长时间都没有更新博客了.上来博客园发现很多朋友还在关注我们,那给大家汇报下最近的一些进展. 收费版上线了,但是下载量不是很多,刚发布的时候下载每天的下载还是挺多,我们几个小伙伴在论坛. ...
- 同态加密-Homomorphic encryption
同态加密(Homomorphic encryption)是一种加密形式,它允许人们对密文进行特定的代数运算得到仍然是加密的结果,将其解密所得到的结果与对明文进行同样的运算结果一样.换言之,这项技术令人 ...
- MATLAB中的set函数
1.MATLAB给每种对象的每一个属性规定了一个名字,称为属性名,而属性名的取值成为属性值.例如,LineStyle是曲线对象的一个属性名,它的值决定着线型,取值可以是'-' .':'.'-.'.'- ...