讲LSM树之前,需要提下三种基本的存储引擎,这样才能清楚LSM树的由来

  • 哈希存储引擎  是哈希表的持久化实现,支持增、删、改以及随机读取操作,但不支持顺序扫描,对应的存储系统为key-value存储系统。对于key-value的插入以及查询,哈希表的复杂度都是O(1),明显比树的操作O(n)快,如果不需要有序的遍历数据,哈希表就是your Mr.Right
  • B树存储引擎是B树(关于B树的由来,数据结构以及应用场景可以看之前一篇博文)的持久化实现,不仅支持单条记录的增、删、读、改操作,还支持顺序扫描(B+树的叶子节点之间的指针),对应的存储系统就是关系数据库(Mysql等)。
  • LSM树(Log-Structured Merge Tree)存储引擎和B树存储引擎一样,同样支持增、删、读、改、顺序扫描操作。而且通过批量存储技术规避磁盘随机写入问题。当然凡事有利有弊,LSM树和B+树相比,LSM树牺牲了部分读性能,用来大幅提高写性能。

通过以上的分析,应该知道LSM树的由来了,LSM树的设计思想非常朴素:将对数据的修改增量保持在内存中,达到指定的大小限制后将这些修改操作批量写入磁盘,不过读取的时候稍微麻烦,需要合并磁盘中历史数据和内存中最近修改操作,所以写入性能大大提升,读取时可能需要先看是否命中内存,否则需要访问较多的磁盘文件。极端的说,基于LSM树实现的HBase的写性能比Mysql高了一个数量级,读性能低了一个数量级。

LSM树原理把一棵大树拆分成N棵小树,它首先写入内存中,随着小树越来越大,内存中的小树会flush到磁盘中,磁盘中的树定期可以做merge操作,合并成一棵大树,以优化读性能。

以上这些大概就是HBase存储的设计主要思想,这里分别对应说明下:

  • 因为小树先写到内存中,为了防止内存数据丢失,写内存的同时需要暂时持久化到磁盘,对应了HBase的MemStore和HLog
  • MemStore上的树达到一定大小之后,需要flush到HRegion磁盘中(一般是Hadoop DataNode),这样MemStore就变成了DataNode上的磁盘文件StoreFile,定期HRegionServer对DataNode的数据做merge操作,彻底删除无效空间,多棵小树在这个时机合并成大树,来增强读性能。

关于LSM Tree,对于最简单的二层LSM Tree而言,内存中的数据和磁盘你中的数据merge操作,如下图

图来自lsm论文

lsm tree,理论上,可以是内存中树的一部分和磁盘中第一层树做merge,对于磁盘中的树直接做update操作有可能会破坏物理block的连续性,但是实际应用中,一般lsm有多层,当磁盘中的小树合并成一个大树的时候,可以重新排好顺序,使得block连续,优化读性能。

hbase在实现中,是把整个内存在一定阈值后,flush到disk中,形成一个file,这个file的存储也就是一个小的B+树,因为hbase一般是部署在hdfs上,hdfs不支持对文件的update操作,所以hbase这么整体内存flush,而不是和磁盘中的小树merge update,这个设计也就能讲通了。内存flush到磁盘上的小树,定期也会合并成一个大树。整体上hbase就是用了lsm tree的思路。

  

LSM树由来、设计思想以及应用到HBase的索引的更多相关文章

  1. LSM树由来、设计思想以及应用到HBase的索引(转)

    转自: http://www.cnblogs.com/yanghuahui/p/3483754.html 讲LSM树之前,需要提下三种基本的存储引擎,这样才能清楚LSM树的由来: 哈希存储引擎  是哈 ...

  2. HBase LSM树存储引擎详解

    1.前提 讲LSM树之前,需要提下三种基本的存储引擎,这样才能清楚LSM树的由来: 哈希存储引擎. B树存储引擎. LSM树(Log-Structured Merge Tree)存储引擎. 2. 哈希 ...

  3. LSM树以及在hbase中的应用

    转自:http://www.cnblogs.com/yanghuahui/p/3483754.html 讲LSM树之前,需要提下三种基本的存储引擎,这样才能清楚LSM树的由来: 哈希存储引擎  是哈希 ...

  4. MongoDB索引存储BTree与LSM树(转载)

    1.为什么 MongoDB 使用B-树,而不是B+树 MongoDB 是一种 nosql,也存储在磁盘上,被设计用在数据模型简单,性能要求高的场合.性能要求高,我们看B-树与B+树的区别: B+树内节 ...

  5. 平衡二叉树、B树、B+树、B*树、LSM树简介

    平衡二叉树是基于分治思想采用二分法的策略提高数据查找速度的二叉树结构.非叶子结点最多只能有两个子结点,且左边子结点点小于当前结点值,右边子结点大于当前结点树,并且为保证查询性能增增删结点时要保证左右两 ...

  6. LSM树——放弃读能力换取写能力,将多次修改放在内存中形成有序树再统一写入磁盘

    LSM树(Log-Structured Merge Tree)存储引擎 代表数据库:nessDB.leveldb.hbase等 核心思想的核心就是放弃部分读能力,换取写入的最大化能力.LSM Tree ...

  7. 17-看图理解数据结构与算法系列(NoSQL存储-LSM树)

    关于LSM树 LSM树,即日志结构合并树(Log-Structured Merge-Tree).其实它并不属于一个具体的数据结构,它更多是一种数据结构的设计思想.大多NoSQL数据库核心思想都是基于L ...

  8. 【转帖】LSM树 和 TSM存储引擎 简介

    LSM树 和 TSM存储引擎 简介 2019-03-08 11:45:23 长烟慢慢 阅读数 461  收藏 更多 分类专栏: 时序数据库   版权声明:本文为博主原创文章,遵循CC 4.0 BY-S ...

  9. 看图轻松理解数据结构与算法系列(NoSQL存储-LSM树) - 全文

    <看图轻松理解数据结构和算法>,主要使用图片来描述常见的数据结构和算法,轻松阅读并理解掌握.本系列包括各种堆.各种队列.各种列表.各种树.各种图.各种排序等等几十篇的样子. 关于LSM树 ...

随机推荐

  1. 详解web.xml中元素的加载顺序

    一.背景 最近在项目中遇到了启动时出现加载service注解注入失败的问题,后来经过不懈努力发现了是因为web.xml配置文件中的元素加载顺序导致的,那么就抽空研究了以下tomcat在启动时web.x ...

  2. 从键盘输入成绩,找出最高分,并输出学生成绩等级。成绩>=最高分-10,为A,成绩>=最高分-20,为B,成绩>=最高分-30,为C,其余等级为D

    import java.util.Scanner;public class TestStudent { public static void main(String[] args) { //从键盘获得 ...

  3. JQ JSON数据类型

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. EF – 2.EF数据查询基础(上)查询数据的实用编程技巧

    目录 5.4.1 查询符合条件的单条记录 EF使用SingleOrDefault()和Find()两个方法查询符合条件的单条记录. 5.4.2 Entity Framework中的内部数据缓存 DbS ...

  5. 在python中使用concurrent.futures实现进程池和线程池

    #!/usr/bin/env python # -*- coding: utf-8 -*- import concurrent.futures import time number_list = [1 ...

  6. SQL的一切常用函数展示

    练习了一下, 用时再慢慢看吧. SHOW WARNINGS; SELECT quote(text_fld) FROM string_tbl; ), 'n'); SELECT ASCII('ö'); S ...

  7. 2014百度之星资格赛 1001:Energy Conversion(水题,逻辑题)

    Energy Conversion Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  8. c++ 调用dll

    1.首先写一个dll程序并且输出成dll. 新建win32项目,然后在应用程序类型中选择dll. HelloDll.h: #pragma once #ifndef MYDLL_API_EXPORTS ...

  9. js this的使用举例

    js this的使用举例 <script type="text/javascript"> function test(obj){ obj.style.width= ob ...

  10. VC 快速创建多层文件夹

    BOOL CreateDirectory( LPCTSTR lpPathName, LPSECURITY_ATTRIBUTES lpSecurityAttributes ); 这个是大多数用户都知道的 ...