In the "100 game," two players take turns adding, to a running total, any integer from 1..10. The player who first causes the running total to reach or exceed 100 wins.

What if we change the game so that players cannot re-use integers?

For example, two players might take turns drawing from a common pool of numbers of 1..15 without replacement until they reach a total >= 100.

Given an integer maxChoosableInteger and another integer desiredTotal, determine if the first player to move can force a win, assuming both players play optimally.

You can always assume that maxChoosableInteger will not be larger than 20 and desiredTotal will not be larger than 300.

Example

Input:
maxChoosableInteger = 10
desiredTotal = 11 Output:
false Explanation:
No matter which integer the first player choose, the first player will lose.
The first player can choose an integer from 1 up to 10.
If the first player choose 1, the second player can only choose integers from 2 up to 10.
The second player will win by choosing 10 and get a total = 11, which is >= desiredTotal.
Same with other integers chosen by the first player, the second player will always win.

refer to https://discuss.leetcode.com/topic/68896/java-solution-using-hashmap-with-detailed-explanation

After solving several "Game Playing" questions in leetcode, I find them to be pretty similar. Most of them can be solved using the top-down DP approach, which "brute-forcely" simulates every possible state of the game.

The key part for the top-down dp strategy is that we need to avoid repeatedly solving sub-problems. Instead, we should use some strategy to "remember" the outcome of sub-problems. Then when we see them again, we instantly know their result. By doing this, we can always reduce time complexity from exponential to polynomial.
(EDIT: Thanks for @billbirdh for pointing out the mistake here. For this problem, by applying the memo, we at most compute for every subproblem once, and there are O(2^n) subproblems, so the complexity is O(2^n) after memorization. (Without memo, time complexity should be like O(n!))

For this question, the key part is: what is the state of the game? Intuitively, to uniquely determine the result of any state, we need to know:

  1. The unchosen numbers
  2. The remaining desiredTotal to reach

A second thought reveals that 1) and 2) are actually related because we can always get the 2) by deducting the sum of chosen numbers from original desiredTotal.

Then the problem becomes how to describes the state using 1).

In my solution, I use a boolean array to denote which numbers have been chosen, and then a question comes to mind, if we want to use a Hashmap to remember the outcome of sub-problems, can we just use Map<boolean[], Boolean> ? Obviously we cannot, because the if we use boolean[] as a key, the reference to boolean[] won't reveal the actual content in boolean[].

Since in the problem statement, it says maxChoosableInteger will not be larger than 20, which means the length of our boolean[] array will be less than 20. Then we can use an Integer to represent this boolean[] array. How?

Say the boolean[] is {false, false, true, true, false}, then we can transfer it to an Integer with binary representation as 00110. Since Integer is a perfect choice to be the key of HashMap, then we now can "memorize" the sub-problems using Map<Integer, Boolean>.

The rest part of the solution is just simulating the game process using the top-down dp.

他的code精妙之处在于:

1. HashMap的key是由boolean array encode生成的,直接用一个array作hashmap的key是不行的,HashMap fails to get the keys when a different array is passed as key, although the elements are same. (As they are different objects). 感觉用object作key都会有这个问题,除非是同一个object,否则仅仅值相等并不指引正确的位置。所以作者在这里encode成了primative type

2. 14行的结束条件。我曾经想过维护TreeSet, treeset.ceiling(desired) != null表示存在大于desired的unused elem, 则return true; 或者维护一个hashset visited, 然后扫描一遍return true; 这些方法都不如作者的这个来的简洁

3. 22行,我写的时候没有把visited reset为false

 public class Solution {
HashMap<Integer, Boolean> map;
boolean[] visited;
public boolean canIWin(int maxChoosableInteger, int desiredTotal) {
int sum = (1+maxChoosableInteger)*maxChoosableInteger/2;
if (sum < desiredTotal) return false;
if (desiredTotal <= 0) return true;
map = new HashMap<Integer, Boolean>();
visited = new boolean[maxChoosableInteger+1];
return helper(desiredTotal);
} public boolean helper(int desired) {
if (desired <= 0) return false; //base case, means the player played last time already reach the desired total, so the current player has no chance to win
int key = calcKey(visited);
if (map.containsKey(key)) return map.get(key);
else {
for (int i=1; i<visited.length; i++) {
if (!visited[i]) {
visited[i] = true;
if (!helper(desired-i)) {
visited[i] = false;
map.put(key, true);
return true;
}
visited[i] = false;
}
}
map.put(key, false);
return false;
}
} public int calcKey(boolean[] visited) {
int res = 0;
for (int i=0; i<visited.length; i++) {
if (visited[i]) {
res |= 1;
}
res = res << 1;
}
return res;
}
}

Solution 2: 我的backtracking做法,TLE了,但是思路应该还可以, 用的是treeSet,用来表示还可以使用的数,之所以这样做是因为当时只想到return true的base case。不过我的方法好处是不用visited数组

 public class Solution {
public boolean canIWin(int maxChoosableInteger, int desiredTotal) {
int sum = (1+maxChoosableInteger)*maxChoosableInteger/2;
if(sum < desiredTotal) return false;
if(desiredTotal <= 0) return true; TreeSet<Integer> set = new TreeSet<Integer>();
for (int i=1; i<=maxChoosableInteger; i++) {
set.add(i);
}
return canWin(set, maxChoosableInteger, desiredTotal);
} public boolean canWin(TreeSet<Integer> set, int max, int desired) {
if (set.ceiling(desired) != null) {
return true;
}
for (int num=1; num<=max; num++) {
if (!set.contains(num)) continue;
set.remove(num);
if (!canWin(set, max, desired-num)) {
set.add(num);
return true;
}
set.add(num);
}
return false;
}
}

Leetcode: Can I Win的更多相关文章

  1. [LeetCode] Can I Win 我能赢吗

    In the "100 game," two players take turns adding, to a running total, any integer from 1.. ...

  2. 状态压缩 - LeetCode #464 Can I Win

    动态规划是一种top-down求解模式,关键在于分解和求解子问题,然后根据子问题的解不断向上递推,得出最终解 因此dp涉及到保存每个计算过的子问题的解,这样当遇到同样的子问题时就不用继续向下求解而直接 ...

  3. [LeetCode] 464. Can I Win 我能赢吗

    In the "100 game," two players take turns adding, to a running total, any integer from 1.. ...

  4. LeetCode 464. Can I Win

    In the "100 game," two players take turns adding, to a running total, any integer from 1.. ...

  5. [leetcode] 464. Can I Win (Medium)

    原题链接 两个人依次从1~maxNum中选取数字(不可重复选取同一个),累和.当一方选取数字累和后结果大于等于给定的目标数字,则此人胜利. 题目给一个maxNum和targetNum,要求判断先手能否 ...

  6. LeetCode All in One 题目讲解汇总(持续更新中...)

    终于将LeetCode的免费题刷完了,真是漫长的第一遍啊,估计很多题都忘的差不多了,这次开个题目汇总贴,并附上每道题目的解题连接,方便之后查阅吧~ 477 Total Hamming Distance ...

  7. [LeetCode] Guess Number Higher or Lower II 猜数字大小之二

    We are playing the Guess Game. The game is as follows: I pick a number from 1 to n. You have to gues ...

  8. [LeetCode] Flip Game 翻转游戏之二

    You are playing the following Flip Game with your friend: Given a string that contains only these tw ...

  9. [LeetCode] Nim Game 尼姆游戏

    You are playing the following Nim Game with your friend: There is a heap of stones on the table, eac ...

随机推荐

  1. 【BZOJ】1119: [POI2009]SLO

    题意 长度为\(n(1 \le n \le 1000000)\)的账单,\(+\)表示存1,\(-\)表示取1,任意时刻存款不会为负.初始有\(p\),最终有\(q\).每一次可以耗时\(x\)将某位 ...

  2. Codeforces Beta Round #8

    A题,小小的模拟题,没看懂题意啊. #include <iostream> #include <cstdio> #include <cmath> #include ...

  3. 去掉inline-block元素默认间距的几种方法

    方法1:使用负margin值一般是-3px,部分浏览器可能不同,不太推荐使用. 方法2:去掉多余空格将元素紧挨着写去掉多余空格,但降低了可读性. 方法3:使用font-size:0在外层父元素加上fo ...

  4. BZOJ4503: 两个串

    Description 兔子们在玩两个串的游戏.给定两个字符串S和T,兔子们想知道T在S中出现了几次, 分别在哪些位置出现.注意T中可能有“?”字符,这个字符可以匹配任何字符. Input 两行两个字 ...

  5. SolrCloud-如何在.NET程序中使用

    https://github.com/vladen/SolrNet 原来我们在我们的项目里用的是根据数据库路由到不同的单机Solr服务器,但是这样的话,每次Solr配置的修改都要修改三台不通的服务器, ...

  6. Point Grey articles link

    Point Grey areaDetector driver Bumblebee XB3 Specifications FlyCapture SDK Example Source Code Under ...

  7. 手机触屏触摸特效javascript-TouchSwipe(依赖于jquery库)中文说明

    by 郑州seo on 2013 年 7 月 6 日 in jquery, 网站建设 with 6 Comments 最近需要做一个手机小门户网站,因为目前主流的手机都是安卓和苹果的,他们的浏览器内核 ...

  8. Runtime Error---Description: An application error occurred on the server....

    [原]Runtime Error---Description: An application error occurred on the server.... 2010-1-7阅读2010 评论3 D ...

  9. .net 的 Url 中文加密

    当 Get 的请求参数可能出现中文的时候,那么就需要对其中文进行加密处理: 引用程序集:System.Web 加密方法: HttpUtility.UrlEncode(); 解密方法:HttpUtili ...

  10. sass学习笔记1

    less在处理CSS动画时,非常恶心,决定转向sass了.sass诞生得比less早,只是因为它是ruby写的,因此受众面够少.但我们不需要自己下编译器或使用命令行,我们可以koala这神器 首先几个 ...