Leetcode: Can I Win
In the "100 game," two players take turns adding, to a running total, any integer from 1..10. The player who first causes the running total to reach or exceed 100 wins. What if we change the game so that players cannot re-use integers? For example, two players might take turns drawing from a common pool of numbers of 1..15 without replacement until they reach a total >= 100. Given an integer maxChoosableInteger and another integer desiredTotal, determine if the first player to move can force a win, assuming both players play optimally. You can always assume that maxChoosableInteger will not be larger than 20 and desiredTotal will not be larger than 300. Example Input:
maxChoosableInteger = 10
desiredTotal = 11 Output:
false Explanation:
No matter which integer the first player choose, the first player will lose.
The first player can choose an integer from 1 up to 10.
If the first player choose 1, the second player can only choose integers from 2 up to 10.
The second player will win by choosing 10 and get a total = 11, which is >= desiredTotal.
Same with other integers chosen by the first player, the second player will always win.
refer to https://discuss.leetcode.com/topic/68896/java-solution-using-hashmap-with-detailed-explanation
After solving several "Game Playing" questions in leetcode, I find them to be pretty similar. Most of them can be solved using the top-down DP approach, which "brute-forcely" simulates every possible state of the game.
The key part for the top-down dp strategy is that we need to avoid repeatedly solving sub-problems. Instead, we should use some strategy to "remember" the outcome of sub-problems. Then when we see them again, we instantly know their result. By doing this, we can always reduce time complexity from exponential to polynomial.
(EDIT: Thanks for @billbirdh for pointing out the mistake here. For this problem, by applying the memo, we at most compute for every subproblem once, and there are O(2^n) subproblems, so the complexity is O(2^n) after memorization. (Without memo, time complexity should be like O(n!))
For this question, the key part is: what is the state of the game? Intuitively, to uniquely determine the result of any state, we need to know:
- The unchosen numbers
- The remaining desiredTotal to reach
A second thought reveals that 1) and 2) are actually related because we can always get the 2) by deducting the sum of chosen numbers from original desiredTotal.
Then the problem becomes how to describes the state using 1).
In my solution, I use a boolean array to denote which numbers have been chosen, and then a question comes to mind, if we want to use a Hashmap to remember the outcome of sub-problems, can we just use Map<boolean[], Boolean> ? Obviously we cannot, because the if we use boolean[] as a key, the reference to boolean[] won't reveal the actual content in boolean[].
Since in the problem statement, it says maxChoosableInteger will not be larger than 20, which means the length of our boolean[] array will be less than 20. Then we can use an Integer to represent this boolean[] array. How?
Say the boolean[] is {false, false, true, true, false}, then we can transfer it to an Integer with binary representation as 00110. Since Integer is a perfect choice to be the key of HashMap, then we now can "memorize" the sub-problems using Map<Integer, Boolean>.
The rest part of the solution is just simulating the game process using the top-down dp.
他的code精妙之处在于:
1. HashMap的key是由boolean array encode生成的,直接用一个array作hashmap的key是不行的,HashMap fails to get the keys when a different array is passed as key, although the elements are same. (As they are different objects). 感觉用object作key都会有这个问题,除非是同一个object,否则仅仅值相等并不指引正确的位置。所以作者在这里encode成了primative type
2. 14行的结束条件。我曾经想过维护TreeSet, treeset.ceiling(desired) != null表示存在大于desired的unused elem, 则return true; 或者维护一个hashset visited, 然后扫描一遍return true; 这些方法都不如作者的这个来的简洁
3. 22行,我写的时候没有把visited reset为false
public class Solution {
HashMap<Integer, Boolean> map;
boolean[] visited;
public boolean canIWin(int maxChoosableInteger, int desiredTotal) {
int sum = (1+maxChoosableInteger)*maxChoosableInteger/2;
if (sum < desiredTotal) return false;
if (desiredTotal <= 0) return true;
map = new HashMap<Integer, Boolean>();
visited = new boolean[maxChoosableInteger+1];
return helper(desiredTotal);
}
public boolean helper(int desired) {
if (desired <= 0) return false; //base case, means the player played last time already reach the desired total, so the current player has no chance to win
int key = calcKey(visited);
if (map.containsKey(key)) return map.get(key);
else {
for (int i=1; i<visited.length; i++) {
if (!visited[i]) {
visited[i] = true;
if (!helper(desired-i)) {
visited[i] = false;
map.put(key, true);
return true;
}
visited[i] = false;
}
}
map.put(key, false);
return false;
}
}
public int calcKey(boolean[] visited) {
int res = 0;
for (int i=0; i<visited.length; i++) {
if (visited[i]) {
res |= 1;
}
res = res << 1;
}
return res;
}
}
Solution 2: 我的backtracking做法,TLE了,但是思路应该还可以, 用的是treeSet,用来表示还可以使用的数,之所以这样做是因为当时只想到return true的base case。不过我的方法好处是不用visited数组
public class Solution {
public boolean canIWin(int maxChoosableInteger, int desiredTotal) {
int sum = (1+maxChoosableInteger)*maxChoosableInteger/2;
if(sum < desiredTotal) return false;
if(desiredTotal <= 0) return true;
TreeSet<Integer> set = new TreeSet<Integer>();
for (int i=1; i<=maxChoosableInteger; i++) {
set.add(i);
}
return canWin(set, maxChoosableInteger, desiredTotal);
}
public boolean canWin(TreeSet<Integer> set, int max, int desired) {
if (set.ceiling(desired) != null) {
return true;
}
for (int num=1; num<=max; num++) {
if (!set.contains(num)) continue;
set.remove(num);
if (!canWin(set, max, desired-num)) {
set.add(num);
return true;
}
set.add(num);
}
return false;
}
}
Leetcode: Can I Win的更多相关文章
- [LeetCode] Can I Win 我能赢吗
In the "100 game," two players take turns adding, to a running total, any integer from 1.. ...
- 状态压缩 - LeetCode #464 Can I Win
动态规划是一种top-down求解模式,关键在于分解和求解子问题,然后根据子问题的解不断向上递推,得出最终解 因此dp涉及到保存每个计算过的子问题的解,这样当遇到同样的子问题时就不用继续向下求解而直接 ...
- [LeetCode] 464. Can I Win 我能赢吗
In the "100 game," two players take turns adding, to a running total, any integer from 1.. ...
- LeetCode 464. Can I Win
In the "100 game," two players take turns adding, to a running total, any integer from 1.. ...
- [leetcode] 464. Can I Win (Medium)
原题链接 两个人依次从1~maxNum中选取数字(不可重复选取同一个),累和.当一方选取数字累和后结果大于等于给定的目标数字,则此人胜利. 题目给一个maxNum和targetNum,要求判断先手能否 ...
- LeetCode All in One 题目讲解汇总(持续更新中...)
终于将LeetCode的免费题刷完了,真是漫长的第一遍啊,估计很多题都忘的差不多了,这次开个题目汇总贴,并附上每道题目的解题连接,方便之后查阅吧~ 477 Total Hamming Distance ...
- [LeetCode] Guess Number Higher or Lower II 猜数字大小之二
We are playing the Guess Game. The game is as follows: I pick a number from 1 to n. You have to gues ...
- [LeetCode] Flip Game 翻转游戏之二
You are playing the following Flip Game with your friend: Given a string that contains only these tw ...
- [LeetCode] Nim Game 尼姆游戏
You are playing the following Nim Game with your friend: There is a heap of stones on the table, eac ...
随机推荐
- 【BZOJ】1086: [SCOI2005]王室联邦
http://www.lydsy.com/JudgeOnline/problem.php?id=1086 题意:n个点的树,要求分块,使得每一块的大小在[b, 3b]内且块与某个点形成的块是连通的(某 ...
- 【CodeVS】 p1077 多源最短路
题目描述 Description 已知n个点(n<=100),给你n*n的方阵,a[i,j]表示从第i个点到第j个点的直接距离. 现在有Q个询问,每个询问两个正整数,a和b,让你求a到b之间的最 ...
- 再说virtual
看了对Anders Hejlsberg的采访, 1)C#中函数默认是非virtual的设计因为:在java中,一个方法默认是虚拟化的,只有对一个方法必须声明final关键字,这样这个方法才是非虚的,无 ...
- 处理海量数据的高级排序之——希尔排序(C++)
希尔算法简介 ...
- Latest node.js & npm installation on Ubuntu 12.04
转自:https://rtcamp.com/tutorials/nodejs/node-js-npm-install-ubuntu/ Compiling is way to go for many b ...
- [CareerCup] 17.7 English Phrase Describe Integer 英文单词表示数字
17.7 Given any integer, print an English phrase that describes the integer (e.g., "One Thousand ...
- Map 映射
package lis0924; import java.util.HashMap; import java.util.Iterator; import java.util.Map; import j ...
- spring security自定义拒绝访问页面
如果试图访问一个没有访问权限的页面,那么页面会出现403 访问错误. 如果我们希望自定义访问拒绝页面,只需要随便创建一个jsp页面,让后将这个页面的位置放到配置文件中. 下面创建一个accessDen ...
- bootstrap-combined.min.css
/*! * Bootstrap v2.2.2 * * Copyright 2012 Twitter, Inc * Licensed under the Apache License v2.0 * ht ...
- ss命令
看到好的博文,所以记录一下.本文出自转载. ss是Socket Statistics的缩写.顾名思义,ss命令可以用来获取socket统计信息,它可以显示和netstat类似的内容.但ss的优势在于它 ...