【update 2017-03-26】http://www.cnblogs.com/candy99/p/6624643.html


满足费马小定理 a^(n-1) === 1(mod n)

--->伪素数      

对于所有a belong Zn*,总存在满足的合数n,称为Carmichael数

----------------------------------

【Miller-Rabin】:

1.随机找多个s个a

2.二次探测定理: 如果p是奇素数,则 x2 === 1(mod p)的解为 x = 1 || x = p - 1(mod p)    {如:5的话,1或4}

//Miller-Rabin
//n prime a -->a^(n-1)===1(mod n) -->fastPowMod(a,n-1,n)==1
//warn: Carmichael/lucky ll mulModhaoxiangmeiyonghenman(ll a,ll b,ll n){
ll ans=;
for(;b;a=(a<<)%n,b>>=)
if(b&)
ans=(ans+a)%n;
return ans;
} ll mulMod(ll a,ll b,ll n){ //黑科技
ll ans=(a*b-(ll)((long double)a/n*b+0.5)*n);
return ans<?ans+n:ans;
} ll powMod(ll a,ll b,ll n){
ll ans=;
for(;b;a=mulMod(a,a,n),b>>=)
if(b&)
ans=(ans*a)%n;
return ans;
} bool witness(ll a,ll n,ll u,int t){
ll now=powMod(a,u,n),pre=now; for(int i=;i<=t;i++){
now=mulMod(now,now,n);
if(now==&&pre!=&&pre!=n-)
return true;
pre=now;
}
if(now!=) return true;
return false;
} bool mrP(ll n){
if(n<=) return false;
if(n==) return true;
if((n&)==) return false; ll u=n-;
int t=;
while((u&)==) u>>=,t++; //n-1=2^t *u int a[]={,,,,,}; //or random
for(int i=;i<;i++){
if(n==a[i]) return true;
else if(witness(a[i],n,u,t)) return false;
}
return true;
}

Miller-Rabin素数快速检测的更多相关文章

  1. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

  2. POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  3. POJ2429_GCD &amp; LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】

    GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...

  4. POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  5. HDU1164_Eddy&#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

    Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  6. Miller Rabin素数检测

    #include<iostream> #include<cstdio> #include<queue> #include<cstring> #inclu ...

  7. 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)

    关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...

  8. 【数论基础】素数判定和Miller Rabin算法

    判断正整数p是否是素数 方法一 朴素的判定   

  9. 与数论的厮守01:素数的测试——Miller Rabin

    看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法.然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了. 为了解决这个问题,我们先来看看费马小定理:若n为素数, ...

随机推荐

  1. apache EnableMMAP指令

    官方说明地址:http://httpd.apache.org/docs/2.4/mod/core.html#enablemmap Use memory-mapping to read files du ...

  2. Web安全之CSRF攻击

    CSRF是什么? CSRF(Cross Site Request Forgery),中文是跨站点请求伪造.CSRF攻击者在用户已经登录目标网站之后,诱使用户访问一个攻击页面,利用目标网站对用户的信任, ...

  3. 用JS描述的数据结构及算法表示——栈和队列(基础版)

    前言:找了上课时数据结构的教程来看,但是用的语言是c++,所以具体实现在网上搜大神的博客来看,我看到的大神们的博客都写得特别好,不止讲了最基本的思想和算法实现,更多的是侧重于实例运用,一边看一边在心里 ...

  4. Sharepoint学习笔记—习题系列--70-576习题解析 -(Q40-Q44)

    Question 40 You have a social networking site in SharePoint 2010 that allows users to post content f ...

  5. [Android]使用Gradle提交自己开源Android库到Maven中心库

    以下内容为原创,欢迎转载,转载请注明 来自天天博客:http://www.cnblogs.com/tiantianbyconan/p/4388175.html 此文针对开源爱好者. 如果你想让别人使用 ...

  6. APP远程调试及网络自动化测试

    一:优测 腾讯旗下的测试服务 http://utest.qq.com/ 二:云测 http://www.testin.cn/ 三:testbird 1.进入这个网站,注册并且登录 https://dt ...

  7. 获取设备IMEI ,手机名称,系统SDK版本号,系统版本号

    1.获取设备IMEI TelephonyManager tm = (TelephonyManager) getSystemService(Context.TELEPHONY_SERVICE); Str ...

  8. Ubuntu 安装Samba服务器

    1.安装 sudo apt-get update sudo apt-get install samba (如果出现库依赖问题可用命令sudo apt-get install samba libwbcl ...

  9. Object-c字符串操作

    字符串操作: -(void) testString{ NSString *str1 = @"some string"; NSLog(@"%@", str1); ...

  10. OC NSString(字符串)

    OC NSString(字符串) 多行文字字面量 NSString * string = @"abC" @"DEF" @"hjk" @&qu ...