1002: [FJOI2007]轮状病毒

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 1766  Solved: 946
[Submit][Status]

Description

 给定n(N<=100),编程计算有多少个不同的n轮状病毒。

Input

第一行有1个正整数n。

Output

将编程计算出的不同的n轮状病毒数输出

Sample Input

3

Sample Output

16

HINT

 

Source

分析:从图中可以很容易看出,答案就是求给定图的生成树个数。本菜蒟蒻,想不出好办法……然后只能去翻2007周冬的集训队论文(orz周冬大神又一次拯救蒟蒻了……),就是讲生成树计数的。

题解:求无向图的生成树个数:先求无向图的基尔霍夫矩阵

如n=4时候(默认中间红点为1,其他顺时针2~n+1)

3  -1  -1  -1  -1

-1  3  -1  0  -1

-1  -1   3  -1  0

-1  0  -1  3  -1

-1  -1  0  -1  3

这个矩阵的与邻接矩阵很相似,两点之间有边用-1表示,没有就用0表示,对于每个(i,i),i∈[1,n+1]对应的位置表示图中i点的度数

然后再任意删去基尔霍夫矩阵的任意第K行和第K列(为了方便删最后一行和最后一列的),对剩下的n*n矩阵当作n阶的行列式求解

注意:要用高精度(突然想转python了……TAT)

————————————————————————————————————————————————————————————————————

解n阶行列式:就是高斯消元将n阶矩阵变成上三角形式,det就是主对角线的乘积

      3  -1  -1  -1  

      -1  3  -1  0  

 |A|=   -1  -1   3  -1  

      -1  0  -1  3

求解它就是先把第一行第一列系数化为1(第一行同时除以3),然后把第一行与后面相加减消去后面每行的第一列(变为0);然后依次类推……

【BZOJ1002】【FJOI2007】轮状病毒(生成树计数)的更多相关文章

  1. bzoj1002: [FJOI2007]轮状病毒 生成树计数

    轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病毒的产生规 ...

  2. [bzoj1002][FJOI2007 轮状病毒] (生成树计数+递推+高精度)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...

  3. BZOJ1002 [FJOI2007]轮状病毒(最小生成树计数)

    Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7125  Solved: 3878[Submit][Status][Discuss] Descripti ...

  4. BZOJ1002 FJOI2007 轮状病毒 【基尔霍夫矩阵+高精度】

    BZOJ1002 FJOI2007 轮状病毒 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原 ...

  5. [luogu2144][bzoj1002][FJOI2007]轮状病毒【高精度+斐波那契数列+基尔霍夫矩阵】

    题目描述 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病 ...

  6. [bzoj1002][FJOI2007]轮状病毒_递推_高精度

    轮状病毒 bzoj-1002 FJOI-2007 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2 ...

  7. bzoj1002: [FJOI2007]轮状病毒(基尔霍夫矩阵)

    1002: [FJOI2007]轮状病毒 题目:传送门 题解: 决定开始板刷的第一题... 看到这题的时候想:这不就是求有多少种最小生成树的方式吗? 不会啊!!!%题解... 什么鬼?基尔霍夫矩阵?? ...

  8. [BZOJ1002] [FJOI2007] 轮状病毒 (数学)

    Description 给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同的n轮状病毒数输出 Sample Inpu ...

  9. BZOJ1002[FJOI2007]轮状病毒

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子 和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下 ...

  10. BZOJ1002: [FJOI2007]轮状病毒 (DP)

    标准做法似乎应该是计算生成树数量的基尔霍夫矩阵之类的.. 我看到的做法是一个神奇的高精度dp,当然以后这个blahblahblah矩阵还是要搞一下..   参考(抄袭)网址   这个dp的原理就是把环 ...

随机推荐

  1. 在可以调用 OLE 之前,必须将当前线程设置为单线程单元(STA)模式

    在可以调用 OLE 之前,必须将当前线程设置为单线程单元(STA)模式 转载自:http://blog.163.com/smhily_min/blog/static/75206226201092011 ...

  2. windows下socket学习(一)

    关于socket的文章,园子里面有很多,其实无非就是 WSAStartup.socket.bind.listen.accept.recv.send(服务端),WSAStartup.socket.con ...

  3. 快速操作Linux终端命令行的快捷键列表

    终端有很多快捷键,不太好记,常用的在这里 Ctrl+r 实现快速检索使用过的历史命令.Ctrl+r中r是retrieve中r.Ctrl+a:光标回到命令行首. (a:ahead)Ctrl+e:光标回到 ...

  4. Bootstrap学习(3)

    Bootstrap 图片  Bootstrap 对图片的支持.Bootstrap 提供了三个可对图片应用简单样式的 class: .img-rounded:添加 border-radius:6px 来 ...

  5. 使用中国版 Office 365 -- Team Site分享

    Team Site(工作组网站)主要用于团队内部的协同工作,团队(组织机构)内部每个需要使用Team Site的用户都需要一个Office 365的license.但是如果我们需要将Team Site ...

  6. UVALive 5061 Lightning Energy Report --LCA

    题意:给一棵树,每次给u到v的路径上所有点加上一个值,最后输出每个点的权值(初始为0) 解法:每次在u,v间加k时,只要让u,v点的权值加上k,u,v的LCA处减去k(因为LCA的子树中加了两个k), ...

  7. HDU3535AreYouBusy[混合背包 分组背包]

    AreYouBusy Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  8. 开启云时代,银狐H5游戏云通迅框架解决方案出炉!

    没有时间开发服务器? 不懂服务器开发? 还在为WEB SOCKET烦恼?还在为网络卡,负载承受能力小烦恼? 银狐H5游戏云通迅框架,集成通讯SDK和开放API,1天即可完成 它也是开放平台,提供游戏需 ...

  9. 在ubunt14.04(linux)下利用cmake编译运行opencv程序

    今天在电脑上安装好了opencv环境,迫不及待的想写个程序来测试一下.但是在windows下我们用vs等集成开发工具.可是在linux下我们应该怎么办呢? 这里我们用了opencv推荐的cmake来编 ...

  10. url编码base编码解码十六进制

    0x25346425353425343525333525343325366125343525373725346425353125366625373825346425343425363725346225 ...