题目链接:http://codeforces.com/contest/915/problem/D

题目大意:

  给出一个\(n\)个结点\(m\)条边的有向图(无自环、无重边,2 ≤ n ≤ 500, 1 ≤ m ≤ min(n(n - 1), 100000) ),问能否通过删除其中的某一条边,使得该图无环。

知识点:  拓扑排序、DFS

解题思路一:

  由于结点数不多,所以可以枚举每个入度不为\(0\)的点,删去通向它的一条边(即使其入度减一),再跑拓扑排序判断有没有环。

AC代码一:

 #include <bits/stdc++.h>

 using namespace std;
const int maxn = , maxm = ;
vector<int> G[maxn];
int in[maxn],tin[maxn],stac[maxn]; bool topo(int n){
int top=,ending=;
for(int i=;i<=n;i++){
if(tin[i]==)
stac[ending++]=i;
}
while(top<ending){
int now=stac[top];
for(int i=;i<G[now].size();i++){
tin[G[now][i]]--;
if(tin[G[now][i]]==) stac[ending++]=G[now][i];
}
top++;
}
return ending>=n;
}
int main(){
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<m;i++){
int u,v;
scanf("%d%d",&u,&v);
in[v]++;
G[u].push_back(v);
}
for(int i=;i<=n;i++){
if(in[i]!=){
for(int j=;j<=n;j++) tin[j]=in[j];
tin[i]--;
if(topo(n)) return *puts("YES");
}
}
return *puts("NO");
}

解题思路二:

  先找出一个简单环,然后枚举删除该环上的每一条边,再跑拓扑排序判断还有没有环。

AC代码二:

#include <bits/stdc++.h>
using namespace std;
const int maxn = ; vector<int> G[maxn];
int mark[maxn],in[maxn],tin[maxn],last[maxn];
int cnt, loop[maxn];//cnt记录环上的结点数
bool dfs(int rt,int la){
last[rt]=la;
mark[rt]=; //访问过的结点,mark=1;
for(int i=;i<G[rt].size();i++){
if(mark[G[rt][i]]==){ //没有访问过的结点, mark=0
if(dfs(G[rt][i],rt)) return true;
}
if(mark[G[rt][i]]==){
int now=rt;
cnt=;
while(now!=G[rt][i]&&now!=-){
loop[cnt++]=now;
now=last[now];
}
loop[cnt++]=G[rt][i];
return true;
}
}
mark[rt]=-; //访问过并且会走到死路的结点,mark=-1
return false;
}
int stac[maxn];
bool topo(int n,int from,int to){//拓扑排序检查是否有环
int top=,ending=;
for(int i=;i<=n;i++){
if(tin[i]==)
stac[ending++]=i;
}
while(top<ending){
int now=stac[top];
for(int i=;i<G[now].size();i++){
if(now==from&&G[now][i]==to) continue;
tin[G[now][i]]--;
if(tin[G[now][i]]==) stac[ending++]=G[now][i];
}
top++;
}
return ending>=n;
}
int main(){
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<m;i++){
int u,v;
scanf("%d%d",&u,&v);
G[u].push_back(v);
in[v]++; //记录入度
}
for(int i=;i<=n;i++){
if(mark[i]==){
if(dfs(i,-)) break;
}
}
if(!cnt) return *puts("YES");
for(int i=;i<cnt;i++){
for(int j=;j<=n;j++) tin[j]=in[j];
tin[loop[(i+)%cnt]]--;
if(topo(n,loop[i],loop[(i+)%cnt])) return *puts("YES");
}
return *puts("NO");
}

CF915D Almost Acyclic Graph的更多相关文章

  1. algorithm@ Shortest Path in Directed Acyclic Graph (O(|V|+|E|) time)

    Given a Weighted Directed Acyclic Graph and a source vertex in the graph, find the shortest paths fr ...

  2. 【CodeForces】915 D. Almost Acyclic Graph 拓扑排序找环

    [题目]D. Almost Acyclic Graph [题意]给定n个点的有向图(无重边),问能否删除一条边使得全图无环.n<=500,m<=10^5. [算法]拓扑排序 [题解]找到一 ...

  3. Almost Acyclic Graph CodeForces - 915D (思维+拓扑排序判环)

    Almost Acyclic Graph CodeForces - 915D time limit per test 1 second memory limit per test 256 megaby ...

  4. D. Almost Acyclic Graph 判断减一条边能不能得到DAG

    D. Almost Acyclic Graph time limit per test 1 second memory limit per test 256 megabytes input stand ...

  5. 题解 CF915D 【Almost Acyclic Graph】

    这道题我第一次的想法是直接判环的数量,然而事实证明实在是太naive了. 随便画个图都可以卡掉我的解法.(不知道在想什么) 这道题的正解是拓扑排序. 朴素的想法是对所有边都跑一次拓扑,但这样$O(m( ...

  6. CodeForces 915D Almost Acyclic Graph

    Description You are given a directed graph consisting of \(n\) vertices and \(m\) edges (each edge i ...

  7. 拓扑排序-有向无环图(DAG, Directed Acyclic Graph)

    条件: 1.每个顶点出现且只出现一次. 2.若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面. 有向无环图(DAG)才有拓扑排序,非DAG图没有拓扑排序一说. 一 ...

  8. Almost Acyclic Graph CodeForces - 915D (思维,图论)

    大意: 给定无向图, 求是否能删除一条边后使图无环 直接枚举边判环复杂度过大, 实际上删除一条边可以看做将该边从一个顶点上拿开, 直接枚举顶点即可 复杂度$O(n(n+m))$ #include &l ...

  9. Almost Acyclic Graph Codeforces - 915D

    以前做过的题都不会了.... 此题做法:优化的暴力 有一个显然的暴力:枚举每一条边试着删掉 注意到题目要求使得图无环,那么找出图上任意一个环,都应当要在其某一处断开(当然没有环是YES) 因此找出图中 ...

随机推荐

  1. 【集群实战】NFS网络文件共享服务2-mount挂载(参数,优化)

    1. NFS客户端挂载深入 1.1 NFS客户端挂载参数说明 在NFS服务端,可以通过cat /var/lib/nfs/etab查看NFS服务器端配置参数的细节. 在NFS客户端,可以通过cat /p ...

  2. 【Linux常见命令】ip命令

    ip命令是用来配置网卡ip信息的命令,且是未来的趋势,重启网卡后IP失效. ip - show / manipulate routing, devices, policy routing and tu ...

  3. 狄慧201771010104《面向对象程序设计(java)》第十六周学习总结

    实验十六  线程技术 实验时间 2017-12-8 一.知识点总结: 1.程序与进程的概念 ‐程序是一段静态的代码,它是应用程序执行的蓝本. ‐进程是程序的一次动态执行,它对应了从代码加载.执行至执行 ...

  4. nginx响应超时upstream timed out 问题处理

    环境介绍 服务器:centos7.2 应用:tomcat集群 服务:nginx 代理 问题描述: 这段时间,听项目组项目经理和业务需求人员跟我反馈,线上业务人员在操作业务交易时,有时会出现nginx错 ...

  5. Spring PropertyPlaceholderConfigurer类载入外部配置

    2019独角兽企业重金招聘Python工程师标准>>> 通常在Spring项目中如果用到配置文件时,常常会使用org.springframework.beans.factory.co ...

  6. Linux的vi和vim编辑器

    Linux中分为:一般模式,插入模式和底行模式 一般模式(通过按iaoIAO键)-->插入模式 插入模式(按Esc键)--> 一般模式 一般模式(通过按:键)-->底行模式 底行模式 ...

  7. Spring Cloud 学习 之 Spring Cloud Eureka(概述)

    Spring Boot版本:2.1.4.RELEASE Spring Cloud版本:Greenwich.SR1 前述: ​ 服务治理可以说是微服务架构中最为核心和基础的模块,它主要用来实现各个微服务 ...

  8. Python 文件的读取与写入

    1. 读取文件,文件中没有中文 备注 : 文件名 : EnglishFile.txt 文件位置 : 保存在所写的.py文件的同级目录,附上截图,便于参考 备注 : 文件位置可以改变,只需要把文件路径传 ...

  9. 物流配送管理系统(ssm,mysql)

    项目演示视频观看地址:https://www.toutiao.com/i6811872614676431371/ 下载地址: 51document.cn 可以实现数据的图形展示.报表展示.报表的导出. ...

  10. idea 2020 配置本地 Maven 仓库

    问题: 默认Maven 仓库地址在C盘,C盘是系统盘能少放东西尽量少放. 只需要简单的两步 1.File~Settings 然后搜索 maven 如下图绿框 修改成你自己的 Maven 仓库 2.Fi ...