题意:给一个array,有两种操作,(1)修改某一个位置的值,(2)询问区间[L,R]内的最大子段和,其中子段需满足相邻两个数的位置的奇偶性不同

思路:假设对于询问操作没有奇偶性的限制,那么记录区间的最大子段和就可以通过合并区间得到答案了。加上奇偶性的限制后,记录的信息必须更加具体,需要把子段的端点的奇偶性加进去,也就是说一个区间需要记录4个值, 分别是奇奇,奇偶,偶偶,偶奇,然后同样可以通过合并区间来得到答案。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/* ******************************************************************************** */
#include <iostream>                                                                 //
#include <cstdio>                                                                   //
#include <cmath>                                                                    //
#include <cstdlib>                                                                  //
#include <cstring>                                                                  //
#include <vector>                                                                   //
#include <ctime>                                                                    //
#include <deque>                                                                    //
#include <queue>                                                                    //
#include <algorithm>                                                                //
using namespace std;                                                                //
                                                                                    //
#define pb push_back                                                                //
#define mp make_pair                                                                //
#define X first                                                                     //
#define Y second                                                                    //
#define all(a) (a).begin(), (a).end()                                               //
#define foreach(i, a) for (typeof(a.begin()) it = a.begin(); it != a.end(); it ++)  //
                                                                                    //
void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);}    //
void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>                    //
void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1;          //
while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>      //
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>              //
void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>   //
void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}   //
                                                                                    //
typedef pair<intint> pii;                                                         //
typedef long long ll;                                                               //
typedef unsigned long long ull;                                                     //
                                                                                    //
/* -------------------------------------------------------------------------------- */
                                                                                    //
template<typename T>bool umax(T &a, const T &b) {
    return a >= b? false : (a = b, true);
}
 
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
 
const ll inf = (ll)1e18;
const int maxn = 1e5 + 7;
 
struct SegTree {
private:
    struct Node {
        ll a[4];
    };
    Node tree[maxn << 2];
    int n;
    bool chk(int i, int j) {
        return (i & 1) ^ (j >> 1);
    }
    int get(int i, int j) {
        return (i & 2) | (j & 1);
    }
    Node merge(const Node &nl, const Node &nr) {
        Node ans;
        for (int i = 0; i < 4; i ++) {
            ans.a[i] = nl.a[i];
            umax(ans.a[i], nr.a[i]);
        }
        for (int i = 0; i < 4; i ++) {
            for (int j = 0; j < 4; j ++) {
                if (chk(i, j)) {
                    umax(ans.a[get(i, j)], nl.a[i] + nr.a[j]);
                }
            }
        }
        return ans;
    }
    void build(int l, int r, int rt) {
        if (l == r) {
            int x;
            RI(x);
            int buf = (l & 1) << 1 | (l & 1);
            for (int i = 0; i < 4; i ++) tree[rt].a[i] = i == buf? x : -inf;
            return ;
        }
        int m = (l + r) >> 1;
        build(lson);
        build(rson);
        tree[rt] = merge(tree[rt << 1], tree[rt << 1 | 1]);
    }
    void update(int p, int x, int l, int r, int rt) {
        if (l == r) {
            tree[rt].a[(p & 1) << 1 | (p & 1)] = x;
            return ;
        }
        int m = (l + r) >> 1;
        if (p <= m) update(p, x, lson);
        else update(p, x, rson);
        tree[rt] = merge(tree[rt << 1], tree[rt << 1 | 1]);
    }
    Node query(int L, int R, int l, int r, int rt) {
        if (L <= l && r <= R) return tree[rt];
        int m = (l + r) >> 1;
        if (R <= m) return query(L, R, lson);
        if (L > m) return query(L, R, rson);
        return merge(query(L, R, lson), query(L, R, rson));
    }
public:
    void build(int nn) { n = nn; build(1, n, 1); }
    void update(int p, int x) { update(p, x, 1, n, 1); }
    ll query(int l, int r) {
        Node buf = query(l, r, 1, n, 1);
        ll ans = buf.a[0];
        for (int i = 1; i < 4; i ++) umax(ans, buf.a[i]);
        return ans;
    }
};
SegTree st;
int main() {
#ifndef ONLINE_JUDGE
    freopen("in.txt""r", stdin);
#endif // ONLINE_JUDGE
    int T;
    cin >> T;
    while (T --) {
        int n, m;
        RI(n, m);
        st.build(n);
        for (int i = 0; i < m; i ++) {
            int t, a, b;
            RI(t, a, b);
            if (t) st.update(a, b);
            else printf("%I64d\n", st.query(a, b));
        }
    }
    return 0;                                                                       //
}                                                                                   //
                                                                                    //
                                                                                    //
                                                                                    //
/* ******************************************************************************** */

[hdu5316]线段树的更多相关文章

  1. 2015 多校联赛 ——HDU5316(线段树)

    Fantasy magicians usually gain their ability through one of three usual methods: possessing it as an ...

  2. 2018.07.08 hdu5316 Magician(线段树)

    Magician Problem Description Fantasy magicians usually gain their ability through one of three usual ...

  3. bzoj3932--可持久化线段树

    题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...

  4. codevs 1082 线段树练习 3(区间维护)

    codevs 1082 线段树练习 3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...

  5. codevs 1576 最长上升子序列的线段树优化

    题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...

  6. codevs 1080 线段树点修改

    先来介绍一下线段树. 线段树是一个把线段,或者说一个区间储存在二叉树中.如图所示的就是一棵线段树,它维护一个区间的和. 蓝色数字的是线段树的节点在数组中的位置,它表示的区间已经在图上标出,它的值就是这 ...

  7. codevs 1082 线段树区间求和

    codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...

  8. PYOJ 44. 【HNSDFZ2016 #6】可持久化线段树

    #44. [HNSDFZ2016 #6]可持久化线段树 统计 描述 提交 自定义测试 题目描述 现有一序列 AA.您需要写一棵可持久化线段树,以实现如下操作: A v p x:对于版本v的序列,给 A ...

  9. CF719E(线段树+矩阵快速幂)

    题意:给你一个数列a,a[i]表示斐波那契数列的下标为a[i],求区间对应斐波那契数列数字的和,还要求能够维护对区间内所有下标加d的操作 分析:线段树 线段树的每个节点表示(f[i],f[i-1])这 ...

随机推荐

  1. Ubuntu当状态栏网络图标隐藏的解决方法汇总

    最有效之一: 直接在终端运行以下命令,以root身份: nm-applet --sm-disable 不建议修改配置文件内容

  2. thinkphp5和nginx不得不说的故事

    由于之前学习用的都是apsche,所以对ngnix一窍不通,在这里写给正在学习的同行,希望可以帮助到你们: 如果你不会用apache部署tp5的可以查看我之前发布的文章,里面有提到 phpstudy ...

  3. css背景渐变色

    张鑫旭关于渐变色博客 菜鸟教程关于渐变色 .img-box{ background: #ec9259; /* 一些不支持背景渐变的浏览器 */ background: -webkit-linear-g ...

  4. redis部署与卸载

    1.先到Redis官网(redis.io)下载redis安装包 cd /tmp wget http://download.redis.io/releases/redis-4.0.10.tar.gz 2 ...

  5. Data Flow Diagram with Examples - Customer Service System

    Data Flow Diagram with Examples - Customer Service System Data Flow Diagram (DFD) provides a visual ...

  6. 【转载】pyinstaller的使用和几个坑

    1.-w是不显示命令窗口,  -i 图标文件的路径  这是改变图标的,但是我发现只能改变任务栏里的和命令窗口的图标,并不能改变exe文件的图标.另外这些参数要加载pyinstaller和路径中间. 2 ...

  7. Linux操作系统进入单用户模式的方法

    单用户模式的作用 在使用Linux的过程中,维护人员经常会碰到一些问题,就是在拥有root账号权限和密码的用户中,总是会出现忘记root密码的情况. 遇到这种情况,一般情况下,维护人员就会通过最常用的 ...

  8. I/O多路复用之select,poll,epoll简介

    一.select 1.起源 select最早于1983年出现在4.2BSD中(BSD是早期的UNIX版本的分支). 它通过一个select()系统调用来监视多个文件描述符的数组,当select()返回 ...

  9. Django中的content_type表

    models.py from django.db import models from django.contrib.contenttypes.models import ContentType # ...

  10. 微信Webapp开发的各种变态路由需求及解决办法!

    前言 最近在使用BUI Webapp开发的一个小商城项目在微信上遇到一些坑及变态需求, 层层深入, 整理一下给后来人参考. 一定有你还不知道的! 调试缓存 问题描述: 微信打开的web页面默认是会缓存 ...