题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

对于本题,前提只有 一次 1阶或者2阶的跳法。

a.如果两种跳法,1阶或者2阶,那么假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法是f(n-1);

b.假定第一次跳的是2阶,那么剩下的是n-2个台阶,跳法是f(n-2)

c.由a\b假设可以得出总跳法为: f(n) = f(n-1) + f(n-2)

d.然后通过实际的情况可以得出:只有一阶的时候 f(1) = 1 ,只有两阶的时候可以有 f(2) = 2

e.可以发现最终得出的是一个斐波那契数列:

| 1, (n=1)

f(n) =     | 2, (n=2)

              | f(n-1)+f(n-2) ,(n>2,n为整数)
 
 
 public class Solution {
public int JumpFloor(int target) {
if(target == 1){
return 1;
}
if (target == 2){
return 2;
}
//n >=3
return JumpFloor(target - 1) + JumpFloor(target -2);
}
}

剑指offer【09】- 跳台阶的更多相关文章

  1. 《剑指offer》 跳台阶

    本题来自<剑指offer> 跳台阶 题目1: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: 同上一篇. C ...

  2. 剑指offer:跳台阶

    目录 题目 解题思路 具体代码 题目 题目链接 剑指offer:跳台阶 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). ...

  3. 剑指offer:跳台阶问题

    基础跳台阶 题目 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 解题思路 这道题就是斐波那契数列的变形问法,因为跳上第N个台阶 ...

  4. Go语言实现:【剑指offer】跳台阶

    该题目来源于牛客网<剑指offer>专题. 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 1阶:共1种跳法: 2阶 ...

  5. 剑指offer例题——跳台阶、变态跳台阶

    题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: n<=0时,有0种跳法 n=1时,只有一种跳法 n=2时,有 ...

  6. 【牛客网-剑指offer】跳台阶

    题目: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 考点: 递归和循环 思路: 1)利用二叉树,左孩子为跳一级,右孩子为跳两 ...

  7. 剑指offer :跳台阶

    这题之前刷leetcode也遇到过,感觉是跟斐波拉契差不多的题. 题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 解 ...

  8. (原)剑指offer变态跳台阶

    变态跳台阶 时间限制:1秒空间限制:32768K 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   分析一下明天是个斐波那契 ...

  9. 牛客网——剑指offer(跳台阶以及变态跳台阶_java实现)

    首先说一个剪枝的概念: 剪枝出现在递归和类递归程序里,因为递归操作用图来表示就是一棵树,树有很多分叉,如果不作处理,就有很多重复分叉,会降低效率,如果能把这些分叉先行记录下来,就可以大大提升效率——这 ...

  10. 剑指Offer 变态跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   其实就是斐波那契数列问题. 假设f(n)是n个台阶跳的次数. f(1) = ...

随机推荐

  1. 使用jackson转换类型时报Unrecognized field

    调用 objectMapper.convertValue(obj, valueType ); 时报错 原因 obj 的属性多于 valueType 导致,添加一条语句即可 objectMapper.c ...

  2. HTML布局梳理

    布局是一个很艺术的话题,即使是相同的HTML文档结构,但加上不同的css样式就会呈现出不同的效果.接下来就来总结一下html常用的布局. 一.布局的分类: 根据页面板块分类: 页面的板块主要是根据栏目 ...

  3. 从零开始Windows环境下安装python+tensorflow

    从零开始Windows环境下安装python+tensorflow 2017年07月12日 02:30:47 qq_16257817 阅读数:29173 标签: windowspython机器学习te ...

  4. 数据备份 rsyncd服务器

    web服务器传文件到备份服务器: 一. rsync备份服务器,yum install -y rsync makdir /etc/rsyncd touch /etc/rsyncd/rsyncd.conf ...

  5. 第二阶段scrum-1

    1.整个团队的任务量: 2.任务看板: 会议照片: 产品状态: 注册登陆界面功能正在实装,消息收发功能正在制作 雷达界面已经完成.

  6. POJ 1942:Paths on a Grid

    Paths on a Grid Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22918   Accepted: 5651 ...

  7. scala def方法时等号和括号使用说明笔记

    scala定义方法时会指定入参和返回类型(无返回类型时对应Unit,即java和C中的void模式). 1.有入参,有返回类型时,scala具有类型推导功能,以下两种表达方式效果一样.但根据scala ...

  8. 连接mysql的各种方式

    mysql连接操作是客户端进程与mysql数据库实例进程进行通信.从程序设计角度来说,属于进程通信,常用进程通信包括: 管道.Tcp/Ip 套接字.UNIX域套接字. 1.TCP/IP (1)使用最多 ...

  9. dirname() 函数返回路径中的目录部分。

    定义和用法 dirname() 函数返回路径中的目录部分. 语法 dirname(path) 参数 描述 path 必需.规定要检查的路径. 说明 path 参数是一个包含有指向一个文件的全路径的字符 ...

  10. Bugku杂项(1—28)

    1.签到题 只要关注公众号就可以得到 flag---开胃菜 2.这是一张单纯的图片 用Winhex打开,会发现最下面有一行编码: key{you are right} 是一串HTML编码,解密下就行了 ...