[Hello 2020] C. New Year and Permutation (组合数学)

C. New Year and Permutation

time limit per test

1 second

memory limit per test

1024 megabytes

input

standard input

output

standard output

Recall that the permutation is an array consisting of nn distinct integers from 11 to nn in arbitrary order. For example, [2,3,1,5,4][2,3,1,5,4] is a permutation, but [1,2,2][1,2,2] is not a permutation (22 appears twice in the array) and [1,3,4][1,3,4] is also not a permutation (n=3n=3 but there is 44 in the array).

A sequence aa is a subsegment of a sequence bb if aa can be obtained from bb by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end. We will denote the subsegments as [l,r][l,r], where l,rl,r are two integers with 1≤l≤r≤n1≤l≤r≤n. This indicates the subsegment where l−1l−1 elements from the beginning and n−rn−r elements from the end are deleted from the sequence.

For a permutation p1,p2,…,pnp1,p2,…,pn, we define a framed segment as a subsegment [l,r][l,r] where max{pl,pl+1,…,pr}−min{pl,pl+1,…,pr}=r−lmax{pl,pl+1,…,pr}−min{pl,pl+1,…,pr}=r−l. For example, for the permutation (6,7,1,8,5,3,2,4)(6,7,1,8,5,3,2,4) some of its framed segments are: [1,2],[5,8],[6,7],[3,3],[8,8][1,2],[5,8],[6,7],[3,3],[8,8]. In particular, a subsegment [i,i][i,i] is always a framed segments for any ii between 11 and nn, inclusive.

We define the happiness of a permutation pp as the number of pairs (l,r)(l,r) such that 1≤l≤r≤n1≤l≤r≤n, and [l,r][l,r] is a framed segment. For example, the permutation [3,1,2][3,1,2] has happiness 55: all segments except [1,2][1,2] are framed segments.

Given integers nn and mm, Jongwon wants to compute the sum of happiness for all permutations of length nn, modulo the prime number mm. Note that there exist n!n! (factorial of nn) different permutations of length nn.

Input

The only line contains two integers nn and mm (1≤n≤2500001≤n≤250000, 108≤m≤109108≤m≤109, mm is prime).

Output

Print rr (0≤r<m0≤r<m), the sum of happiness for all permutations of length nn, modulo a prime number mm.

Examples

input

Copy

1 993244853

output

Copy

1

input

Copy

2 993244853

output

Copy

6

input

Copy

3 993244853

output

Copy

32

input

Copy

2019 993244853

output

Copy

923958830

input

Copy

2020 437122297

output

Copy

265955509

Note

For sample input n=3n=3, let's consider all permutations of length 33:

  • [1,2,3][1,2,3], all subsegments are framed segment. Happiness is 66.
  • [1,3,2][1,3,2], all subsegments except [1,2][1,2] are framed segment. Happiness is 55.
  • [2,1,3][2,1,3], all subsegments except [2,3][2,3] are framed segment. Happiness is 55.
  • [2,3,1][2,3,1], all subsegments except [2,3][2,3] are framed segment. Happiness is 55.
  • [3,1,2][3,1,2], all subsegments except [1,2][1,2] are framed segment. Happiness is 55.
  • [3,2,1][3,2,1], all subsegments are framed segment. Happiness is 66.

Thus, the sum of happiness is 6+5+5+5+5+6=326+5+5+5+5+6=32.

题意:

给定一个数字n和 一个质数m,

问n的所有全排列的good值sum和,每一个排列的good值使有多少个点对pair(i,j) 是framed subsegment

使 \(i<=j\) 且 \(\max\{p_l, p_{l+1}, \dots, p_r\} - \min\{p_l, p_{l+1}, \dots, p_r\} = r - l\)

思路:

如果\([l,r]\) 是framed subsegment ,那么所有\([min_{i = l}^{r} p_i, max_{i = l}^{r} p_i]\) 范围内的数都必须在区间\([l,r]\) 中。

我们定义 区间\([l,r]\) 的长度 \(len= r-l+1\) ,那么 长度为len的framed subsegment 的范围一共有n-len+1 种。

例如 n=3,len=2,有2种范围 : ①\([1,2]\) ②\([2,3]\)

而长度为len的framed subsegment 又有\(len!\) 种排列方式

例如: 范围是\([1,2]\) 有\(2!\) 种排列方式,(1,2) and (2 ,1 ) 且都符合要求。

除了 长度为len的framed subsegment 的范围 的数有 n-len 个,它们任意排列后再将framed subsegment 整体插入都对满足条件没有影响。

所以任意排列有\((n-len)!\) 方式,插板法 有\(n-len+1\) 种方式。

所以 长度为len的framed subsegment 的方式个数为:

\((n-len+1)^2*fac[len]*fac[n-len]\),fac[i] 为 i的阶乘

所以我们只需要预处理0~n的所有阶乘后在\([1,n]\)范围内枚举len 即可得到答案。

ps:记得取模。

代码:

ll m;
int n;
ll fac[maxn]; int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
n = readint();
m = readll();
fac[0] = 1ll;
repd(i, 1, n)
{
fac[i] = fac[i - 1] * i % m;
}
ll ans = 0ll;
repd(i, 1, n)
{
ans += (1ll * (n - i + 1) % m * fac[i] % m * fac[n - i] % m * (n - i + 1) % m);
ans %= m;
}
printf("%lld\n", ans );
return 0;
}

[Hello 2020] C. New Year and Permutation (组合数学)的更多相关文章

  1. Wannafly Winter Camp 2020 Day 6D 递增递增 - dp,组合数学

    给定两个常为 \(n\) 的序列 \(l_i,r_i\),问夹在它们之间 ( \(\forall i, l_i \leq a_i \leq r_i\) ) 的不降序列的元素总和. Solution 先 ...

  2. HDU 6044 Limited Permutation 读入挂+组合数学

    Limited Permutation Problem Description As to a permutation p1,p2,⋯,pn from 1 to n, it is uncomplica ...

  3. codeforces 1284C. New Year and Permutation(组合数学)

    链接:https://codeforces.com/problemset/problem/1284/C 题意:定义一个framed segment,在区间[l,r]中,max值-min值 = r - ...

  4. hdu 6044 : Limited Permutation (2017 多校第一场 1012) 【输入挂 组合数学】

    题目链接 参考博客: http://blog.csdn.net/jinglinxiao/article/details/76165353 http://blog.csdn.net/qq_3175920 ...

  5. Wannafly Camp 2020 Day 1C 染色图 - 组合数学,整除分块

    定义一张无向图 G=⟨V,E⟩ 是 k 可染色的当且仅当存在函数 f:V↦{1,2,⋯,k} 满足对于 G 中的任何一条边 (u,v),都有 f(u)≠f(v). 定义函数 g(n,k) 的值为所有包 ...

  6. Codeforces Global Round 7 C. Permutation Partitions(组合数学)

    题意: 给你 n 长全排列的一种情况,将其分为 k 份,取每份中的最大值相加,输出和的最大值和有多少种分法等于最大值. 思路: 取前 k 大值,储存下标,每两个 k 大值间有 vi+1 - vi 种分 ...

  7. Colorful Bricks CodeForces - 1081C ( 组合数学 或 DP )

    On his free time, Chouti likes doing some housework. He has got one new task, paint some bricks in t ...

  8. Algorithm: Permutation & Combination

    组合计数 组合数学主要是研究一组离散对象满足一定条件的安排的存在性.构造及计数问题.计数理论是狭义组合数学中最基本的一个研究方向,主要研究的是满足一定条件的排列组合及计数问题.组合计数包含计数原理.计 ...

  9. Mysterious Crime CodeForces - 1043D (思维+组合数学)

    Acingel is a small town. There was only one doctor here — Miss Ada. She was very friendly and nobody ...

随机推荐

  1. 【快学SpringBoot】快速上手好用方便的Spring Cache缓存框架

    前言 缓存,在开发中是非常常用的.在高并发系统中,如果没有缓存,纯靠数据库来扛,那么数据库压力会非常大,搞不好还会出现宕机的情况.本篇文章,将会带大家学习Spring Cache缓存框架. 原创声明 ...

  2. sql 中u.*什么意思

    i.*  i是一个表的别名,i.*是这个表的所有列,比如 select i.* from customer i; 相当于 select id,name,password from customer;

  3. 吴裕雄--天生自然Numpy库学习笔记:NumPy IO

    Numpy 可以读写磁盘上的文本数据或二进制数据. NumPy 为 ndarray 对象引入了一个简单的文件格式:npy. npy 文件用于存储重建 ndarray 所需的数据.图形.dtype 和其 ...

  4. techiediaries网站的Laravel 6系列教程

    Laravel 6 Tutorial & New Features - Build a CRM [PART 1] Laravel 6 REST API CRUD Tutorial - Buil ...

  5. 【SSM 下载】下载文件

    111111111 /** * 导出客户数据 */ @RequestMapping("exportCustomer") public ResponseEntity<Objec ...

  6. 使用 OClint 进行静态代码分析

    OCLint 就是一个建立在 Clang 上的工具,能够发现代码中潜在的问题. 最近需要一个静态分析代码工具,帮助我们发布运行应用前找到代码潜在的问题. 其实对于iOS开发,我们的日常开发上已经用到了 ...

  7. 理解WPF中的视觉树和逻辑树

    轉載地址:http://blog.csdn.net/changtianshuiyue/article/details/26981797 理解WPF中的视觉树和逻辑树  Understanding th ...

  8. linux 添加与修改用户归属组

    参考资源:https://cnzhx.net/blog/linux-add-user-to-group/ 一:已存在的用户 1.要以root进行登录 2.打开终端 3.修改分组 usermod -a ...

  9. UIAutomation 测试winForm

    static void Main(string[] args) { Console.WriteLine("\n开始窗口程序自动化测试\n"); //启动被测试程序 string p ...

  10. HTTP协议中常用相应的状态码总结

    HTTP协议与我们的生活息息相关,尤其对于我们后端开发人员,工作之余我整理了一些HTTP协议响应的一些常见的状态码,希望能帮助大家 HTTP状态码列表 消息(1字头)服务器收到请求,需要请求者继续执行 ...