[Hello 2020] C. New Year and Permutation (组合数学)

C. New Year and Permutation

time limit per test

1 second

memory limit per test

1024 megabytes

input

standard input

output

standard output

Recall that the permutation is an array consisting of nn distinct integers from 11 to nn in arbitrary order. For example, [2,3,1,5,4][2,3,1,5,4] is a permutation, but [1,2,2][1,2,2] is not a permutation (22 appears twice in the array) and [1,3,4][1,3,4] is also not a permutation (n=3n=3 but there is 44 in the array).

A sequence aa is a subsegment of a sequence bb if aa can be obtained from bb by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end. We will denote the subsegments as [l,r][l,r], where l,rl,r are two integers with 1≤l≤r≤n1≤l≤r≤n. This indicates the subsegment where l−1l−1 elements from the beginning and n−rn−r elements from the end are deleted from the sequence.

For a permutation p1,p2,…,pnp1,p2,…,pn, we define a framed segment as a subsegment [l,r][l,r] where max{pl,pl+1,…,pr}−min{pl,pl+1,…,pr}=r−lmax{pl,pl+1,…,pr}−min{pl,pl+1,…,pr}=r−l. For example, for the permutation (6,7,1,8,5,3,2,4)(6,7,1,8,5,3,2,4) some of its framed segments are: [1,2],[5,8],[6,7],[3,3],[8,8][1,2],[5,8],[6,7],[3,3],[8,8]. In particular, a subsegment [i,i][i,i] is always a framed segments for any ii between 11 and nn, inclusive.

We define the happiness of a permutation pp as the number of pairs (l,r)(l,r) such that 1≤l≤r≤n1≤l≤r≤n, and [l,r][l,r] is a framed segment. For example, the permutation [3,1,2][3,1,2] has happiness 55: all segments except [1,2][1,2] are framed segments.

Given integers nn and mm, Jongwon wants to compute the sum of happiness for all permutations of length nn, modulo the prime number mm. Note that there exist n!n! (factorial of nn) different permutations of length nn.

Input

The only line contains two integers nn and mm (1≤n≤2500001≤n≤250000, 108≤m≤109108≤m≤109, mm is prime).

Output

Print rr (0≤r<m0≤r<m), the sum of happiness for all permutations of length nn, modulo a prime number mm.

Examples

input

Copy

1 993244853

output

Copy

1

input

Copy

2 993244853

output

Copy

6

input

Copy

3 993244853

output

Copy

32

input

Copy

2019 993244853

output

Copy

923958830

input

Copy

2020 437122297

output

Copy

265955509

Note

For sample input n=3n=3, let's consider all permutations of length 33:

  • [1,2,3][1,2,3], all subsegments are framed segment. Happiness is 66.
  • [1,3,2][1,3,2], all subsegments except [1,2][1,2] are framed segment. Happiness is 55.
  • [2,1,3][2,1,3], all subsegments except [2,3][2,3] are framed segment. Happiness is 55.
  • [2,3,1][2,3,1], all subsegments except [2,3][2,3] are framed segment. Happiness is 55.
  • [3,1,2][3,1,2], all subsegments except [1,2][1,2] are framed segment. Happiness is 55.
  • [3,2,1][3,2,1], all subsegments are framed segment. Happiness is 66.

Thus, the sum of happiness is 6+5+5+5+5+6=326+5+5+5+5+6=32.

题意:

给定一个数字n和 一个质数m,

问n的所有全排列的good值sum和,每一个排列的good值使有多少个点对pair(i,j) 是framed subsegment

使 \(i<=j\) 且 \(\max\{p_l, p_{l+1}, \dots, p_r\} - \min\{p_l, p_{l+1}, \dots, p_r\} = r - l\)

思路:

如果\([l,r]\) 是framed subsegment ,那么所有\([min_{i = l}^{r} p_i, max_{i = l}^{r} p_i]\) 范围内的数都必须在区间\([l,r]\) 中。

我们定义 区间\([l,r]\) 的长度 \(len= r-l+1\) ,那么 长度为len的framed subsegment 的范围一共有n-len+1 种。

例如 n=3,len=2,有2种范围 : ①\([1,2]\) ②\([2,3]\)

而长度为len的framed subsegment 又有\(len!\) 种排列方式

例如: 范围是\([1,2]\) 有\(2!\) 种排列方式,(1,2) and (2 ,1 ) 且都符合要求。

除了 长度为len的framed subsegment 的范围 的数有 n-len 个,它们任意排列后再将framed subsegment 整体插入都对满足条件没有影响。

所以任意排列有\((n-len)!\) 方式,插板法 有\(n-len+1\) 种方式。

所以 长度为len的framed subsegment 的方式个数为:

\((n-len+1)^2*fac[len]*fac[n-len]\),fac[i] 为 i的阶乘

所以我们只需要预处理0~n的所有阶乘后在\([1,n]\)范围内枚举len 即可得到答案。

ps:记得取模。

代码:

ll m;
int n;
ll fac[maxn]; int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
n = readint();
m = readll();
fac[0] = 1ll;
repd(i, 1, n)
{
fac[i] = fac[i - 1] * i % m;
}
ll ans = 0ll;
repd(i, 1, n)
{
ans += (1ll * (n - i + 1) % m * fac[i] % m * fac[n - i] % m * (n - i + 1) % m);
ans %= m;
}
printf("%lld\n", ans );
return 0;
}

[Hello 2020] C. New Year and Permutation (组合数学)的更多相关文章

  1. Wannafly Winter Camp 2020 Day 6D 递增递增 - dp,组合数学

    给定两个常为 \(n\) 的序列 \(l_i,r_i\),问夹在它们之间 ( \(\forall i, l_i \leq a_i \leq r_i\) ) 的不降序列的元素总和. Solution 先 ...

  2. HDU 6044 Limited Permutation 读入挂+组合数学

    Limited Permutation Problem Description As to a permutation p1,p2,⋯,pn from 1 to n, it is uncomplica ...

  3. codeforces 1284C. New Year and Permutation(组合数学)

    链接:https://codeforces.com/problemset/problem/1284/C 题意:定义一个framed segment,在区间[l,r]中,max值-min值 = r - ...

  4. hdu 6044 : Limited Permutation (2017 多校第一场 1012) 【输入挂 组合数学】

    题目链接 参考博客: http://blog.csdn.net/jinglinxiao/article/details/76165353 http://blog.csdn.net/qq_3175920 ...

  5. Wannafly Camp 2020 Day 1C 染色图 - 组合数学,整除分块

    定义一张无向图 G=⟨V,E⟩ 是 k 可染色的当且仅当存在函数 f:V↦{1,2,⋯,k} 满足对于 G 中的任何一条边 (u,v),都有 f(u)≠f(v). 定义函数 g(n,k) 的值为所有包 ...

  6. Codeforces Global Round 7 C. Permutation Partitions(组合数学)

    题意: 给你 n 长全排列的一种情况,将其分为 k 份,取每份中的最大值相加,输出和的最大值和有多少种分法等于最大值. 思路: 取前 k 大值,储存下标,每两个 k 大值间有 vi+1 - vi 种分 ...

  7. Colorful Bricks CodeForces - 1081C ( 组合数学 或 DP )

    On his free time, Chouti likes doing some housework. He has got one new task, paint some bricks in t ...

  8. Algorithm: Permutation & Combination

    组合计数 组合数学主要是研究一组离散对象满足一定条件的安排的存在性.构造及计数问题.计数理论是狭义组合数学中最基本的一个研究方向,主要研究的是满足一定条件的排列组合及计数问题.组合计数包含计数原理.计 ...

  9. Mysterious Crime CodeForces - 1043D (思维+组合数学)

    Acingel is a small town. There was only one doctor here — Miss Ada. She was very friendly and nobody ...

随机推荐

  1. 《Web安全攻防 渗透测试实战指南》 学习笔记 (二)

    Web安全攻防 渗透测试实战指南   学习笔记 (二)   第二章  漏洞环境及实践  

  2. 实现简单ORM案例

    ORM框架: • 我们希望设计一个可以实现对象和SQL自动映射的框架,但是整体用法和设计比Hibernate简单.砍掉不必要的功能.• 会穿插使用设计模式• 增加 – 将对象对应成sql语句,执行sq ...

  3. cf 76 div2

    传送门 题意 t组样例 n个学生, x最多交换次数 a交换的第一个位置 b交换的第二个位置 最多是交换n-1次,不懂的话可以找个数列自己模拟一下: 然后其他的就是abs(a-b)+x;两个位置之间的距 ...

  4. Educational Codeforces Round 82 A. Erasing Zeroes

    You are given a string ss. Each character is either 0 or 1. You want all 1's in the string to form a ...

  5. 转载和补充:Oracle中的一些特殊字符

    oracle通配符,运算符的使用 用于where比较条件的有: 等于:=.<.<=.>.>=.<> 包含:in.not in exists.not exists 范 ...

  6. 【PAT甲级】1054 The Dominant Color (20 分)

    题意: 输入两个正整数M和N(M<=800,N<=600),分别代表一张图片的宽度和高度,接着输入N行每行包括M个点的颜色编号,输出这张图片主导色的编号.(一张图片的主导色占据了一半以上的 ...

  7. SearchRequest用于与搜索文档、聚合、定制查询有关的任何操作

    SearchRequest用于与搜索文档.聚合.定制查询有关的任何操作,还提供了在查询结果的基于上,对于匹配的关键词进行突出显示的方法. 1,首先创建搜索请求对象:SearchRequest sear ...

  8. 前端学习 之 CSS(一)

    一:什么是 CSS? ·CSS 指层叠样式表 (Cascading Style Sheets) ·样式定义如何显示 HTML 元素 ·样式通常存储在样式表中 ·把样式添加到 HTML 4.0 中,是为 ...

  9. 【转】Docker学习_本地/容器文件互传(5)

    将容器内文件拷贝到宿主机 docker cp <containerId>:/导出文件的位置/xxx.sql /宿主机的位置 示例:docker cp bf4c4fff338c:/root/ ...

  10. Spark入门:第4节 Spark程序:1 - 9

    五. Spark角色介绍 Spark是基于内存计算的大数据并行计算框架.因为其基于内存计算,比Hadoop中MapReduce计算框架具有更高的实时性,同时保证了高效容错性和可伸缩性.从2009年诞生 ...