[Hello 2020] C. New Year and Permutation (组合数学)
[Hello 2020] C. New Year and Permutation (组合数学)
C. New Year and Permutation
time limit per test
1 second
memory limit per test
1024 megabytes
input
standard input
output
standard output
Recall that the permutation is an array consisting of nn distinct integers from 11 to nn in arbitrary order. For example, [2,3,1,5,4][2,3,1,5,4] is a permutation, but [1,2,2][1,2,2] is not a permutation (22 appears twice in the array) and [1,3,4][1,3,4] is also not a permutation (n=3n=3 but there is 44 in the array).
A sequence aa is a subsegment of a sequence bb if aa can be obtained from bb by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end. We will denote the subsegments as [l,r][l,r], where l,rl,r are two integers with 1≤l≤r≤n1≤l≤r≤n. This indicates the subsegment where l−1l−1 elements from the beginning and n−rn−r elements from the end are deleted from the sequence.
For a permutation p1,p2,…,pnp1,p2,…,pn, we define a framed segment as a subsegment [l,r][l,r] where max{pl,pl+1,…,pr}−min{pl,pl+1,…,pr}=r−lmax{pl,pl+1,…,pr}−min{pl,pl+1,…,pr}=r−l. For example, for the permutation (6,7,1,8,5,3,2,4)(6,7,1,8,5,3,2,4) some of its framed segments are: [1,2],[5,8],[6,7],[3,3],[8,8][1,2],[5,8],[6,7],[3,3],[8,8]. In particular, a subsegment [i,i][i,i] is always a framed segments for any ii between 11 and nn, inclusive.
We define the happiness of a permutation pp as the number of pairs (l,r)(l,r) such that 1≤l≤r≤n1≤l≤r≤n, and [l,r][l,r] is a framed segment. For example, the permutation [3,1,2][3,1,2] has happiness 55: all segments except [1,2][1,2] are framed segments.
Given integers nn and mm, Jongwon wants to compute the sum of happiness for all permutations of length nn, modulo the prime number mm. Note that there exist n!n! (factorial of nn) different permutations of length nn.
Input
The only line contains two integers nn and mm (1≤n≤2500001≤n≤250000, 108≤m≤109108≤m≤109, mm is prime).
Output
Print rr (0≤r<m0≤r<m), the sum of happiness for all permutations of length nn, modulo a prime number mm.
Examples
input
Copy
1 993244853
output
Copy
1
input
Copy
2 993244853
output
Copy
6
input
Copy
3 993244853
output
Copy
32
input
Copy
2019 993244853
output
Copy
923958830
input
Copy
2020 437122297
output
Copy
265955509
Note
For sample input n=3n=3, let's consider all permutations of length 33:
- [1,2,3][1,2,3], all subsegments are framed segment. Happiness is 66.
- [1,3,2][1,3,2], all subsegments except [1,2][1,2] are framed segment. Happiness is 55.
- [2,1,3][2,1,3], all subsegments except [2,3][2,3] are framed segment. Happiness is 55.
- [2,3,1][2,3,1], all subsegments except [2,3][2,3] are framed segment. Happiness is 55.
- [3,1,2][3,1,2], all subsegments except [1,2][1,2] are framed segment. Happiness is 55.
- [3,2,1][3,2,1], all subsegments are framed segment. Happiness is 66.
Thus, the sum of happiness is 6+5+5+5+5+6=326+5+5+5+5+6=32.
题意:
给定一个数字n和 一个质数m,
问n的所有全排列的good值sum和,每一个排列的good值使有多少个点对pair(i,j) 是framed subsegment
使 \(i<=j\) 且 \(\max\{p_l, p_{l+1}, \dots, p_r\} - \min\{p_l, p_{l+1}, \dots, p_r\} = r - l\)
思路:
如果\([l,r]\) 是framed subsegment ,那么所有\([min_{i = l}^{r} p_i, max_{i = l}^{r} p_i]\) 范围内的数都必须在区间\([l,r]\) 中。
我们定义 区间\([l,r]\) 的长度 \(len= r-l+1\) ,那么 长度为len的framed subsegment 的范围一共有n-len+1 种。
例如 n=3,len=2,有2种范围 : ①\([1,2]\) ②\([2,3]\)
而长度为len的framed subsegment 又有\(len!\) 种排列方式
例如: 范围是\([1,2]\) 有\(2!\) 种排列方式,(1,2) and (2 ,1 ) 且都符合要求。
除了 长度为len的framed subsegment 的范围 的数有 n-len 个,它们任意排列后再将framed subsegment 整体插入都对满足条件没有影响。
所以任意排列有\((n-len)!\) 方式,插板法 有\(n-len+1\) 种方式。
所以 长度为len的framed subsegment 的方式个数为:
\((n-len+1)^2*fac[len]*fac[n-len]\),fac[i] 为 i的阶乘
所以我们只需要预处理0~n的所有阶乘后在\([1,n]\)范围内枚举len 即可得到答案。
ps:记得取模。
代码:
ll m;
int n;
ll fac[maxn];
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
n = readint();
m = readll();
fac[0] = 1ll;
repd(i, 1, n)
{
fac[i] = fac[i - 1] * i % m;
}
ll ans = 0ll;
repd(i, 1, n)
{
ans += (1ll * (n - i + 1) % m * fac[i] % m * fac[n - i] % m * (n - i + 1) % m);
ans %= m;
}
printf("%lld\n", ans );
return 0;
}
[Hello 2020] C. New Year and Permutation (组合数学)的更多相关文章
- Wannafly Winter Camp 2020 Day 6D 递增递增 - dp,组合数学
给定两个常为 \(n\) 的序列 \(l_i,r_i\),问夹在它们之间 ( \(\forall i, l_i \leq a_i \leq r_i\) ) 的不降序列的元素总和. Solution 先 ...
- HDU 6044 Limited Permutation 读入挂+组合数学
Limited Permutation Problem Description As to a permutation p1,p2,⋯,pn from 1 to n, it is uncomplica ...
- codeforces 1284C. New Year and Permutation(组合数学)
链接:https://codeforces.com/problemset/problem/1284/C 题意:定义一个framed segment,在区间[l,r]中,max值-min值 = r - ...
- hdu 6044 : Limited Permutation (2017 多校第一场 1012) 【输入挂 组合数学】
题目链接 参考博客: http://blog.csdn.net/jinglinxiao/article/details/76165353 http://blog.csdn.net/qq_3175920 ...
- Wannafly Camp 2020 Day 1C 染色图 - 组合数学,整除分块
定义一张无向图 G=⟨V,E⟩ 是 k 可染色的当且仅当存在函数 f:V↦{1,2,⋯,k} 满足对于 G 中的任何一条边 (u,v),都有 f(u)≠f(v). 定义函数 g(n,k) 的值为所有包 ...
- Codeforces Global Round 7 C. Permutation Partitions(组合数学)
题意: 给你 n 长全排列的一种情况,将其分为 k 份,取每份中的最大值相加,输出和的最大值和有多少种分法等于最大值. 思路: 取前 k 大值,储存下标,每两个 k 大值间有 vi+1 - vi 种分 ...
- Colorful Bricks CodeForces - 1081C ( 组合数学 或 DP )
On his free time, Chouti likes doing some housework. He has got one new task, paint some bricks in t ...
- Algorithm: Permutation & Combination
组合计数 组合数学主要是研究一组离散对象满足一定条件的安排的存在性.构造及计数问题.计数理论是狭义组合数学中最基本的一个研究方向,主要研究的是满足一定条件的排列组合及计数问题.组合计数包含计数原理.计 ...
- Mysterious Crime CodeForces - 1043D (思维+组合数学)
Acingel is a small town. There was only one doctor here — Miss Ada. She was very friendly and nobody ...
随机推荐
- Python:数值类型
数值类型的组成 数值类型可以直接使用的有:整数.浮点数.复数 Python3的整型,可以自动调整大小,当做long使用 整数 int 整数的进制表示 表示形式: 二进制:0b... 八进制:0o... ...
- Passive Client Feature
Q. How is the passive client feature used on Wireless LAN Controllers? A. Passive clients are wirele ...
- Cisco AP-Mobility Express基础
Part I 介绍 1.1基本概况 Cisco Mobility Express这个名词出现在Cisco “8”系列的AP上,例如现在的AP1852,AP2802,AP3802等都是Mobility ...
- POJ1797 Heavy Transportation (堆优化的Dijkstra变形)
Background Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand bus ...
- js脚本中执行java后台代码
使用场景:关闭页面弹窗时执行sql语句. 其实js里执行sql语句有多种方式. 方式一:直接在js代码里调用sql语句,原则上不能使用,因为这将sql直接暴露在客户端,安全性极差. 方式二:在js里运 ...
- Update(stage3):第1节 redis组件:10、redis集群
10.redis集群 1.redis集群的介绍 Redis 集群是一个提供在多个Redis节点之间共享数据的程序集. Redis 集群并不支持同时处理多个键的 Redis 命令,因为这需要在多个节点间 ...
- 【PAT甲级】1004 Counting Leaves (30 分)(BFS)
题意:给出一棵树的点数N,输入M行,每行输入父亲节点An,儿子个数n,和a1,a2,...,an(儿子结点编号),从根节点层级向下依次输出当前层级叶子结点个数,用空格隔开.(0<N<100 ...
- sort、uniq 、 join 、 comm、diff 、 patch 、df、du 和 time 命令的用法
1 sort 命令 同文本文件打交道时,总避不开排序,那是因为对于文本处理任务而言,排序(sort)可以起到不小的作用.sort 命令能够帮助我们对文本文件和 stdin 进行排序操作.通常,它会结合 ...
- [A]List`1[MyObject] cannot be cast to [B]List`1[MyObject]
Description I have created a small class in a single ASP.NET 4.5 web forms page that is instantiated ...
- centos7搭建hadoop2.10完全分布式
本篇介绍在centos7中大家hadoop2.10完全分布式,首先准备4台机器:1台nn(namenode);3台dn(datanode) IP hostname 进程 192.168.30.141 ...