[Hello 2020] C. New Year and Permutation (组合数学)
[Hello 2020] C. New Year and Permutation (组合数学)
C. New Year and Permutation
time limit per test
1 second
memory limit per test
1024 megabytes
input
standard input
output
standard output
Recall that the permutation is an array consisting of nn distinct integers from 11 to nn in arbitrary order. For example, [2,3,1,5,4][2,3,1,5,4] is a permutation, but [1,2,2][1,2,2] is not a permutation (22 appears twice in the array) and [1,3,4][1,3,4] is also not a permutation (n=3n=3 but there is 44 in the array).
A sequence aa is a subsegment of a sequence bb if aa can be obtained from bb by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end. We will denote the subsegments as [l,r][l,r], where l,rl,r are two integers with 1≤l≤r≤n1≤l≤r≤n. This indicates the subsegment where l−1l−1 elements from the beginning and n−rn−r elements from the end are deleted from the sequence.
For a permutation p1,p2,…,pnp1,p2,…,pn, we define a framed segment as a subsegment [l,r][l,r] where max{pl,pl+1,…,pr}−min{pl,pl+1,…,pr}=r−lmax{pl,pl+1,…,pr}−min{pl,pl+1,…,pr}=r−l. For example, for the permutation (6,7,1,8,5,3,2,4)(6,7,1,8,5,3,2,4) some of its framed segments are: [1,2],[5,8],[6,7],[3,3],[8,8][1,2],[5,8],[6,7],[3,3],[8,8]. In particular, a subsegment [i,i][i,i] is always a framed segments for any ii between 11 and nn, inclusive.
We define the happiness of a permutation pp as the number of pairs (l,r)(l,r) such that 1≤l≤r≤n1≤l≤r≤n, and [l,r][l,r] is a framed segment. For example, the permutation [3,1,2][3,1,2] has happiness 55: all segments except [1,2][1,2] are framed segments.
Given integers nn and mm, Jongwon wants to compute the sum of happiness for all permutations of length nn, modulo the prime number mm. Note that there exist n!n! (factorial of nn) different permutations of length nn.
Input
The only line contains two integers nn and mm (1≤n≤2500001≤n≤250000, 108≤m≤109108≤m≤109, mm is prime).
Output
Print rr (0≤r<m0≤r<m), the sum of happiness for all permutations of length nn, modulo a prime number mm.
Examples
input
Copy
1 993244853
output
Copy
1
input
Copy
2 993244853
output
Copy
6
input
Copy
3 993244853
output
Copy
32
input
Copy
2019 993244853
output
Copy
923958830
input
Copy
2020 437122297
output
Copy
265955509
Note
For sample input n=3n=3, let's consider all permutations of length 33:
- [1,2,3][1,2,3], all subsegments are framed segment. Happiness is 66.
- [1,3,2][1,3,2], all subsegments except [1,2][1,2] are framed segment. Happiness is 55.
- [2,1,3][2,1,3], all subsegments except [2,3][2,3] are framed segment. Happiness is 55.
- [2,3,1][2,3,1], all subsegments except [2,3][2,3] are framed segment. Happiness is 55.
- [3,1,2][3,1,2], all subsegments except [1,2][1,2] are framed segment. Happiness is 55.
- [3,2,1][3,2,1], all subsegments are framed segment. Happiness is 66.
Thus, the sum of happiness is 6+5+5+5+5+6=326+5+5+5+5+6=32.
题意:
给定一个数字n和 一个质数m,
问n的所有全排列的good值sum和,每一个排列的good值使有多少个点对pair(i,j) 是framed subsegment
使 \(i<=j\) 且 \(\max\{p_l, p_{l+1}, \dots, p_r\} - \min\{p_l, p_{l+1}, \dots, p_r\} = r - l\)
思路:
如果\([l,r]\) 是framed subsegment ,那么所有\([min_{i = l}^{r} p_i, max_{i = l}^{r} p_i]\) 范围内的数都必须在区间\([l,r]\) 中。
我们定义 区间\([l,r]\) 的长度 \(len= r-l+1\) ,那么 长度为len的framed subsegment 的范围一共有n-len+1 种。
例如 n=3,len=2,有2种范围 : ①\([1,2]\) ②\([2,3]\)
而长度为len的framed subsegment 又有\(len!\) 种排列方式
例如: 范围是\([1,2]\) 有\(2!\) 种排列方式,(1,2) and (2 ,1 ) 且都符合要求。
除了 长度为len的framed subsegment 的范围 的数有 n-len 个,它们任意排列后再将framed subsegment 整体插入都对满足条件没有影响。
所以任意排列有\((n-len)!\) 方式,插板法 有\(n-len+1\) 种方式。
所以 长度为len的framed subsegment 的方式个数为:
\((n-len+1)^2*fac[len]*fac[n-len]\),fac[i] 为 i的阶乘
所以我们只需要预处理0~n的所有阶乘后在\([1,n]\)范围内枚举len 即可得到答案。
ps:记得取模。
代码:
ll m;
int n;
ll fac[maxn];
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
n = readint();
m = readll();
fac[0] = 1ll;
repd(i, 1, n)
{
fac[i] = fac[i - 1] * i % m;
}
ll ans = 0ll;
repd(i, 1, n)
{
ans += (1ll * (n - i + 1) % m * fac[i] % m * fac[n - i] % m * (n - i + 1) % m);
ans %= m;
}
printf("%lld\n", ans );
return 0;
}
[Hello 2020] C. New Year and Permutation (组合数学)的更多相关文章
- Wannafly Winter Camp 2020 Day 6D 递增递增 - dp,组合数学
给定两个常为 \(n\) 的序列 \(l_i,r_i\),问夹在它们之间 ( \(\forall i, l_i \leq a_i \leq r_i\) ) 的不降序列的元素总和. Solution 先 ...
- HDU 6044 Limited Permutation 读入挂+组合数学
Limited Permutation Problem Description As to a permutation p1,p2,⋯,pn from 1 to n, it is uncomplica ...
- codeforces 1284C. New Year and Permutation(组合数学)
链接:https://codeforces.com/problemset/problem/1284/C 题意:定义一个framed segment,在区间[l,r]中,max值-min值 = r - ...
- hdu 6044 : Limited Permutation (2017 多校第一场 1012) 【输入挂 组合数学】
题目链接 参考博客: http://blog.csdn.net/jinglinxiao/article/details/76165353 http://blog.csdn.net/qq_3175920 ...
- Wannafly Camp 2020 Day 1C 染色图 - 组合数学,整除分块
定义一张无向图 G=⟨V,E⟩ 是 k 可染色的当且仅当存在函数 f:V↦{1,2,⋯,k} 满足对于 G 中的任何一条边 (u,v),都有 f(u)≠f(v). 定义函数 g(n,k) 的值为所有包 ...
- Codeforces Global Round 7 C. Permutation Partitions(组合数学)
题意: 给你 n 长全排列的一种情况,将其分为 k 份,取每份中的最大值相加,输出和的最大值和有多少种分法等于最大值. 思路: 取前 k 大值,储存下标,每两个 k 大值间有 vi+1 - vi 种分 ...
- Colorful Bricks CodeForces - 1081C ( 组合数学 或 DP )
On his free time, Chouti likes doing some housework. He has got one new task, paint some bricks in t ...
- Algorithm: Permutation & Combination
组合计数 组合数学主要是研究一组离散对象满足一定条件的安排的存在性.构造及计数问题.计数理论是狭义组合数学中最基本的一个研究方向,主要研究的是满足一定条件的排列组合及计数问题.组合计数包含计数原理.计 ...
- Mysterious Crime CodeForces - 1043D (思维+组合数学)
Acingel is a small town. There was only one doctor here — Miss Ada. She was very friendly and nobody ...
随机推荐
- CSS的精灵技术
- python调用os模块锁定用户
import timeimport osuser_info = { 'mac': {'pwd': '123', 'count': 0, 'locked': False}, 'tank': {'pwd' ...
- Linux kali安装或更新之后出现乱码
打开终端,输入以下命令,之后重启. apt-get install ttf-wqy-zenhei
- shell脚本部署apache并能通过浏览器访问!
第一步:导入httpd-2.2.17.tar包 第二步:创建一个test.sh文件(可在/root下) 第三步编写shell脚本 > 会重写文件,如果文件里面有内容会覆盖 >>这个是 ...
- Docker将自己的镜像发布到个人私有仓库
Docker将自己的镜像发布到个人私有仓库 1.注册dockerhub账户 docker提供了一个类似于github的仓库dockerhub, 网址https://hub.docker.com/需要注 ...
- tomcat8配置了tomcat-users.xml,报403 Access Denied
配置了tomcat-users.xml之后,重启tomcat服务,仍然访问拒绝. 原因:tomcat8.5 更改之后,仍然访问拒绝. 还需步骤如下: vi /usr/local/tomcat/apac ...
- cnblog 开通啦!
喜大普奔! 终于开通cnblog了!以后有blog都会放这里哦 > o < 希望大家可以关注窝哦.
- 笔记-mongodb-用户及角色
笔记-mongodb-用户及角色 1. users 其实mongodb支持多种验证方式,本文只提及最简单也最常用的方式. 1.1. Authentication Database When ...
- Ubuntu12.04LTS中安装和使用Spin
https://blog.csdn.net/jackandsnow/article/details/94434481 把第三步 安装tk(在wish中):apt-get install wish 改为 ...
- Linux命令:ss命令
ss功能:用来显示套接字信息的,类似于netstat,可以显示更多的信息,用于替代netstat. ss常用选项 ss -t:tcp协议的连接 -u:udp协议的链接 -w:裸套接字相关 -x:uni ...