seq2seq
模型在广泛的任务比如机器翻译,语音识别,文本总结中取得了巨大的成功。这个教程给读者 seq2seq 模型一个完整的理解,并且展示如何从原型建立一个有竞争力的 seq2seq 模型。我们专注于神经机器翻译任务,这是 seq2seq 模型取得的第一个广泛的成功。下面包含的代码是轻量级,高质量,产品级,并且包含了最新的研究思路。
我们通过以下实现了这个目标:
1.使用了最近的
decoder attention API
2.包含了我们强大的简历
RNN 和 seq2seq 模型的经验。
3.提供了技巧来简历最好的
NMT 模型来复制  GNMT 系统。

TensorFlow 神经机器教程-TensorFlow Neural Machine Translation Tutorial的更多相关文章

  1. 【转载 | 翻译】Visualizing A Neural Machine Translation Model(神经机器翻译模型NMT的可视化)

    转载并翻译Jay Alammar的一篇博文:Visualizing A Neural Machine Translation Model (Mechanics of Seq2seq Models Wi ...

  2. 神经机器翻译 - NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

    论文:NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE 综述 背景及问题 背景: 翻译: 翻译模型学习条件分布 ...

  3. On Using Very Large Target Vocabulary for Neural Machine Translation Candidate Sampling Sampled Softmax

    [softmax分类器的加速器] https://www.tensorflow.org/api_docs/python/tf/nn/sampled_softmax_loss This is a fas ...

  4. Sequence Models Week 3 Neural Machine Translation

    Neural Machine Translation Welcome to your first programming assignment for this week! You will buil ...

  5. 课程五(Sequence Models),第三周(Sequence models & Attention mechanism) —— 1.Programming assignments:Neural Machine Translation with Attention

    Neural Machine Translation Welcome to your first programming assignment for this week! You will buil ...

  6. 对Neural Machine Translation by Jointly Learning to Align and Translate论文的详解

    读论文 Neural Machine Translation by Jointly Learning to Align and Translate 这个论文是在NLP中第一个使用attention机制 ...

  7. Effective Approaches to Attention-based Neural Machine Translation(Global和Local attention)

    这篇论文主要是提出了Global attention 和 Local attention 这个论文有一个译文,不过我没细看 Effective Approaches to Attention-base ...

  8. [笔记] encoder-decoder NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

    原文地址 :[1409.0473] Neural Machine Translation by Jointly Learning to Align and Translate (arxiv.org) ...

  9. Introduction to Neural Machine Translation - part 1

    The Noise Channel Model \(p(e)\): the language Model \(p(f|e)\): the translation model where, \(e\): ...

随机推荐

  1. 【底层原理:深入理解计算机系统】#1 一切从"hello world"说起 (一)

    计算机系统是由硬件和系统软件组成的,他们共同工作来运行应用程序.虽然系统的具体实现方式随着时间不断的在变化,但是系统的内在概念却没有改变的. 所有的计算机硬件和软件有着相似的结构和功能.这个系列专题便 ...

  2. sql -- 获取商品分类的最新销售情况

    表设计: 需求: 1.先找出各个分类中销售的最新日期 select prod_class,max(sales_date) as sn from prod_sales group by prod_cla ...

  3. win10下安装LoadRunner12汉化包

    1.前提是已经下载LoadRunner安装文件,及已经安装成功: 安装包: 安装成功后,桌面会出现3个图标: 下面,开始安装汉化包: 1.右键点击“HP_LoadRunner_12.02_Commun ...

  4. c++获取屏幕大小

    API: 要取得屏幕大小,可以用下面几个函数: # include <windows.h>int cx = GetSystemMetrics( SM_CXFULLSCREEN ); int ...

  5. 由一个项目需求引发的 - textarea中的换行和空格

    当我们使用 textarea 在前台编辑文字,并用 js 提交到后台的时候,空格和换行是我们最需要考虑的问题.在textarea 里面,空格和换行会被保存为/s和/n,如果我们前台输入和前台显示的文字 ...

  6. python小白入门

    阅读目录 一python介绍 二安装python解释器 三第一个python程序 四变量 五用户与程序交互 六基本数据类型 七格式化输出 八基本运算符 九流程控制之if...else 十流程控制之wh ...

  7. 使用ZXingObjC扫描二维码横竖屏对应

    /** 根据屏幕的方向设置扫描的方向 * @author maguang * @param parameter * @return result */ - (void)showaCapture { C ...

  8. 基于VR三维全景的虚拟展馆展览实现

    VR三维全景虚拟现实技术的应用,能够通过全方位互动式来还原真实场景,令人产生一种身临其境的感觉,由于三维全景虚拟现实技术具有一定应用优势,其在企业与院校展示.建筑规划展示.酒店宾馆展示等方面都逐步得到 ...

  9. Effective Go笔记

    一 格式化 使用gofmt程序对go源码进行格式化,以便统一编码风格,可直接在GoLand进行配置[1].Go源码格式使用tab作为缩进,且很少使用括号. 二 注释 Go支持块注释/**/和行注释// ...

  10. Navicat15最新版本破解 亲测可用!!!

    1.下载Navicat Premium官网https://www.navicat.com.cn/下载最新版本下载安装 2.本人网盘链接:https://pan.baidu.com/s/1ncSaxId ...