保留版权所有,转帖注明出处



前面章节中,我们加载了SciKit-Learn自带的数据集digits,可以通过以下语句查看数据集中包含哪些主要内容:

digits.keys()

输出

dict_keys(['data', 'target', 'target_names', 'images', 'DESCR'])
  • data 样本数据
  • target 目标值
  • target_names 目标名称
  • images 图像格式(二维)的样本数据
  • DESCR 描述信息

查看数据集的描述:

print(digits.DESCR)

输出

.. _digits_dataset:

Optical recognition of handwritten digits dataset
-------------------------------------------------- **Data Set Characteristics:** :Number of Instances: 5620
:Number of Attributes: 64
:Attribute Information: 8x8 image of integer pixels in the range 0..16.
:Missing Attribute Values: None
:Creator: E. Alpaydin (alpaydin '@' boun.edu.tr)
:Date: July; 1998 This is a copy of the test set of the UCI ML hand-written digits datasets
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits The data set contains images of hand-written digits: 10 classes where
each class refers to a digit. Preprocessing programs made available by NIST were used to extract
normalized bitmaps of handwritten digits from a preprinted form. From a
total of 43 people, 30 contributed to the training set and different 13
to the test set. 32x32 bitmaps are divided into nonoverlapping blocks of
4x4 and the number of on pixels are counted in each block. This generates
an input matrix of 8x8 where each element is an integer in the range
0..16. This reduces dimensionality and gives invariance to small
distortions. For info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G.
T. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C.
L. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469,
1994. .. topic:: References - C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their
Applications to Handwritten Digit Recognition, MSc Thesis, Institute of
Graduate Studies in Science and Engineering, Bogazici University.
- E. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika.
- Ken Tang and Ponnuthurai N. Suganthan and Xi Yao and A. Kai Qin.
Linear dimensionalityreduction using relevance weighted LDA. School of
Electrical and Electronic Engineering Nanyang Technological University.
2005.
- Claudio Gentile. A New Approximate Maximal Margin Classification
Algorithm. NIPS. 2000.

这是一个手写数字的数据集。

类似地,你也可以查看其它内容:


# 打印数据内容
print(digits.data) # 打印目标值
print(digits.target) # 打印目标名称(标签)
print(digits.target_names)
...

注意:如果使用read_csv()导入数据集,数据集已经分割好,导入的数据集中可能没有描述字段,但是你可以使用head()tail()来检查数据。在这种情况下,最好仔细查看数据描述文件夹!

接下来,我们进一步了解数据集中的数据。

可以看到,数据集中的数据都是numpy数组的格式,可以查看这些数组的数据类型,形状,长度等信息。

import numpy as np

# 打印data数组的形状
print(digits.data.shape) # 输出:(1797, 64)
# 打印data数组的类型
print(digits.data.dtype) # 输出:float64 # 打印target数组的形状
print(digits.target.shape) # 输出:(1797,)
# 打印target数组的类型
print(digits.target.dtype) # 输出:int32
# 打印target数组中包含的唯一值数量
print(len(np.unique(digits.target))) # 输出:10 # 打印target_names数组的形状
print(digits.target_names.shape) # 输出:(10,)
# 打印target_names数组的类型
print(digits.target_names.dtype) # 输出:int32 # 打印images数组的形状
print(digits.images.shape) # 输出:(1797, 8, 8)
# 打印images数组的类型
print(digits.images.dtype) # 输出:float64

可以看出,digits.data中,有1797个样本,每个样本有64个特征值(实际上是像素灰度值)。

digits.target中,包含了上面样本数据对应的目标值(样本标签),同样有1797个目标值,但10个唯一值,即0-9。换句话说,所有1797个目标值都由0到9之间的数字组成,这意味着模型要识别的是从0到9的数字。

digits.target_names包含了样本标签的名称: 0~9。

最后,可以看到digits.images数组包含3个维度: 有1797个实例,大小为8×8像素。digits.images数据与digits.data内容应该相同,只是格式不同。可以通过以下方式验证两者内容是否相同:

print(np.all(digits.images.reshape((1797, 64)) == digits.data)) # 输出:true

digits.images改变形状为(1797, 64),与digits.data比较,两者相等。numpy方法all()可以检测所有数组元素的值是否为True。

SciKit-Learn 数据集基本信息的更多相关文章

  1. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  2. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  3. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  4. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  5. Scikit Learn

    Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.

  6. Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)

    所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的 ...

  7. 机器学习-scikit learn学习笔记

    scikit-learn官网:http://scikit-learn.org/stable/ 通常情况下,一个学习问题会包含一组学习样本数据,计算机通过对样本数据的学习,尝试对未知数据进行预测. 学习 ...

  8. Linear Regression with Scikit Learn

    Before you read  This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...

  9. 如何使用scikit—learn处理文本数据

    答案在这里:http://www.tuicool.com/articles/U3uiiu http://scikit-learn.org/stable/modules/feature_extracti ...

随机推荐

  1. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 表单:内联表单

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  2. Kafka源码系列之源码分析zookeeper在kafka的作用

    浪尖的kafka源码系列以kafka0.8.2.2源码为例给大家进行讲解的.纯属个人爱好,希望大家对不足之处批评指正. 一,zookeeper在分布式集群的作用 1,数据发布与订阅(配置中心) 发布与 ...

  3. H5地理定位获取用户当前位置、城市

    第一步:需要在百度地图开发者平台创建一个应用:http://lbsyun.baidu.com/apiconsole/key/create 配置信息 申请配置成功以后返回一个AK 第二步:引入百度地图的 ...

  4. Python入门知识总结【新手必学】

    Python 基础学习输入和输出list 和 tuple条件判断循环dict 和 set感觉python这门语言用途较广,先熟悉下其语法.PS:另外很多人在学习Python的过程中,往往因为没有好的教 ...

  5. 5.8 Nginx 常用功能的配置

  6. when_did_you_born-瞟来的wp

    继上文,这次开始嫖when_did_you_born这题.前面的步骤大致是一样的就不赘述了,直接到代码分析. 字符串 这次呢在main函数处 按下F5进入调试 查看反汇编代码 可以清楚的看到它的逻辑一 ...

  7. 将OB86的故障信息保存在DB86中去

    出现DP站故障的时候,CPU会自动调用OB86 ,OB86 的20B 局部变量里面有丰富的故障信息,生成数据块DB86 在DB86 中生成5个双字元素的数组ARAY 在OB86中调用 "BL ...

  8. es和数据类型

    js=es+dom+bom,dom和bom前面已经讲完了 es是js的本体,是指数据类型,和对于数据的操作手段,他的版本更新得很快 这些功能不是html文件提供的,也不是浏览器提供的,即使脱离了dom ...

  9. 二叉树 - DFS与BFS

    二叉树 - DFS与BFS ​ 深度优先遍历 (DFS Depth First Search) 就是一个节点不到头(叶子节点为空) 不回头 ​ 广度有点遍历(BFS Breadth First Sea ...

  10. Pycharm激活码(失效更新)

    该方法不需要修改Hosts, 如果修改过请删除后再激活. 获取激活码: http://idea.medeming.com/jet/images/jihuoma.txt http://idea.mede ...