Codeforces 590 A:Median Smoothing
2 seconds
256 megabytes
standard input
standard output
A schoolboy named Vasya loves reading books on programming and mathematics. He has recently read an encyclopedia article that described the method of median smoothing (or median filter) and its
many applications in science and engineering. Vasya liked the idea of the method very much, and he decided to try it in practice.
Applying the simplest variant of median smoothing to the sequence of numbers a1, a2, ..., an will
result a new sequence b1, b2, ..., bnobtained
by the following algorithm:
- b1 = a1, bn = an,
that is, the first and the last number of the new sequence match the corresponding numbers of the original sequence. - For i = 2, ..., n - 1 value bi is
equal to the median of three values ai - 1, ai and ai + 1.
The median of a set of three numbers is the number that goes on the second place, when these three numbers are written in the non-decreasing order. For example, the median of the set 5, 1, 2 is
number 2, and the median of set 1, 0, 1 is equal to 1.
In order to make the task easier, Vasya decided to apply the method to sequences consisting of zeros and ones only.
Having made the procedure once, Vasya looked at the resulting sequence and thought: what if I apply the algorithm to it once again, and then apply it to the next result, and so on? Vasya tried a couple of examples and found out that after some number of median
smoothing algorithm applications the sequence can stop changing. We say that the sequence is stable, if it does not change when the median smoothing is applied to it.
Now Vasya wonders, whether the sequence always eventually becomes stable. He asks you to write a program that, given a sequence of zeros and ones, will determine whether it ever becomes stable. Moreover, if it ever becomes stable, then you should determine
what will it look like and how many times one needs to apply the median smoothing algorithm to initial sequence in order to obtain a stable one.
The first input line of the input contains a single integer n (3 ≤ n ≤ 500 000) —
the length of the initial sequence.
The next line contains n integers a1, a2, ..., an (ai = 0 or ai = 1),
giving the initial sequence itself.
If the sequence will never become stable, print a single number - 1.
Otherwise, first print a single integer — the minimum number of times one needs to apply the median smoothing algorithm to the initial sequence before it becomes is stable. In the second line print n numbers
separated by a space — the resulting sequence itself.
4
0 0 1 1
0
0 0 1 1
5
0 1 0 1 0
2
0 0 0 0 0
In the second sample the stabilization occurs in two steps:
,
and the sequence 00000 is obviously stable.
题意是给出了一段 0 1 组成的波,然后这个波的值可能会发生变化,排除起点与终点,如果某一位置上的值不等于其左右位置加上自己的中位数话,那么它会变成中位数,这样导致波会振荡一次,问波最终是否会稳定,不会输出-1。会,就输出其振荡次数与最终波的值。
首先可以判断最终波是一定会稳定的,不可能最终不稳定,因为只有0与1,边缘值a1与an不变了,所以他们只会往中间延伸这种稳定的状态,然后我做的方法是叠加,如果前者不稳定,那么后者的不稳定程度+1,其实这么做是不对的,波振荡的这一系列的值只可能是一个山峰形状的,如1 2 1 或者 1 2 2 1.但是因为都是 0 1组成所以不用管那么多,只需管每一位置振荡次数的奇偶即可。然后就是判断每一段振荡最终位置的值,奇数不用管了,1
2 3 4 5和1 2 3 2 1最终形成的效果是一样的。偶数需要调整,1 2 3 4要调整为 1 2 2 1这样的效果。
代码:
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std; int n;
int a[5];
int val[500005];
int stable[500005]; int main()
{
//freopen("i.txt", "r", stdin);
//freopen("o.txt", "w", stdout); int i, k, maxn;
scanf("%d", &n); for (i = 0; i < n; i++)
scanf("%d", val + i); maxn = 0;
memset(stable, 0, sizeof(stable)); for (i = 1; i < n - 1; i++)
{
a[0] = val[i - 1];
a[1] = val[i];
a[2] = val[i + 1]; sort(a, a + 3); if (val[i] != a[1])
{
stable[i] = stable[i - 1] + 1;
maxn = max(maxn, stable[i]);
}
else
{
stable[i] = 0;
}
}
int flag = 0;
for (i = n - 2; i >= 1; i--)
{
if (stable[i] == 0)
{
flag = 0;
}
else
{
if (flag == 0 && stable[i])
{
flag = 1;
if (stable[i] % 2 == 0)
{
int temp = stable[i];
for (k = temp; k > temp / 2; k--)
{
stable[i]++;
i--;
}
i++;
}
}
}
} printf("%d\n", (maxn + 1) / 2);
for (i = 0; i < n; i++)
{
if (i == 0)
{
printf("%d", val[i]);
}
else
{
if (stable[i] & 1)
{
printf(" %d", (val[i] + 1) & 1);
}
else
{
printf(" %d", val[i]);
}
}
}
printf("\n");
//system("pause");
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
Codeforces 590 A:Median Smoothing的更多相关文章
- Codeforces Round #327 (Div. 2) C. Median Smoothing 找规律
C. Median Smoothing Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/591/p ...
- Codeforces Round #327 (Div. 2) B. Rebranding C. Median Smoothing
B. Rebranding The name of one small but proud corporation consists of n lowercase English letters. T ...
- codeforces 590A A. Median Smoothing(思维)
题目链接: A. Median Smoothing time limit per test 2 seconds memory limit per test 256 megabytes input st ...
- Codeforces Round #327 (Div. 2)C. Median Smoothing 构造
C. Median Smoothing A schoolboy named Vasya loves reading books on programming and mathematics. He ...
- 【22.70%】【codeforces 591C】 Median Smoothing
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- cf590A Median Smoothing
A. Median Smoothing time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- ACM学习历程—CodeForces 590A Median Smoothing(分类讨论 && 数学)
题目链接:http://codeforces.com/problemset/problem/590/A 题目大意是给一个串,头和尾每次变换保持不变. 中间的a[i]变成a[i-1],a[i],a[i+ ...
- Codeforces Round #327 (Div. 1), problem: (A) Median Smoothing
http://codeforces.com/problemset/problem/590/A: 在CF时没做出来,当时直接模拟,然后就超时喽. 题意是给你一个0 1串然后首位和末位固定不变,从第二项开 ...
- CodeForces - 1005E2:Median on Segments (General Case Edition) (函数的思想)
You are given an integer sequence a1,a2,…,ana1,a2,…,an. Find the number of pairs of indices (l,r)(l, ...
随机推荐
- centos610无桌面安装openoffice
Centos610系列配置卸载yum remove libreoffice*yum remove openoffice* 安装yum install openoffice.org-writer yu ...
- 【协作式原创】查漏补缺之Go并发问题(单核多核)
主要回答一下几个问题 1.单核并发问题 2.多核并发问题 2.几个不正确的同步案例 1.单核并发问题 先看一段go(1.11)代码: 单核CPU,1万个携程,每个携程执行100次+1操作, 思考n最终 ...
- idna与utf-8编码漏洞
来自Black hat 2019 原理什么是IDN?国际化域名(Internationalized Domain Name,IDN)又名特殊字符域名,是指部分或完全使用特殊文字或字母组成的互联网域名, ...
- PTA的Python练习题(六)
从 第3章-8 字符串逆序 开始 1. n = str(input()) n1=n[::-1] print(n1) 2. 不是很好做这道题,自己还是C语言的思维,网上几乎也找不到什么答案 s = in ...
- Mybatis的三种批量操作数据的方法
方法1: 使用for循环在java代码中insert (不推荐) 方法2: 使用 在Mapper.xml当中使用 foreach循环的方式进行insert PersonDao.java文件 publi ...
- Ngnix调整
1.隐藏版本号,防止针对版本攻击 http { server_tokens off;2.增加并发连接 2.1 worker_processes :改为CPU核数一致,因为异步IO进程是单 ...
- 用Jackson进行Json序列化时的常用注解
Jackson时spring boot默认使用的json格式化的包,它的几个常用注解: @JsonIgnore 用在属性上面,在序列化和反序列化时都自动忽略掉该属性 @JsonProperty(&qu ...
- 吴裕雄--天生自然PythonDjangoWeb企业开发:解决Pythonno module named "XX"问题
在项目中加入 sys.path.append('你的django项目路径') sys.path.append('python的site-packages路径')
- Intellij Idea 下包建包,无论怎么建都在同一级,已解决(附图)
1.很多新手,刚开始使用Intellij Idea的时候,项目建包都出现所建的包都在用一级. 2.这是因为,刚开始建项目的时候,Hide Empty Middle Packages是默认勾选的,只要去 ...
- jsoup教学系列
http://my.oschina.net/flashsword/blog?catalog=390084