Codeforces 590 A:Median Smoothing
2 seconds
256 megabytes
standard input
standard output
A schoolboy named Vasya loves reading books on programming and mathematics. He has recently read an encyclopedia article that described the method of median smoothing (or median filter) and its
many applications in science and engineering. Vasya liked the idea of the method very much, and he decided to try it in practice.
Applying the simplest variant of median smoothing to the sequence of numbers a1, a2, ..., an will
result a new sequence b1, b2, ..., bnobtained
by the following algorithm:
- b1 = a1, bn = an,
that is, the first and the last number of the new sequence match the corresponding numbers of the original sequence. - For i = 2, ..., n - 1 value bi is
equal to the median of three values ai - 1, ai and ai + 1.
The median of a set of three numbers is the number that goes on the second place, when these three numbers are written in the non-decreasing order. For example, the median of the set 5, 1, 2 is
number 2, and the median of set 1, 0, 1 is equal to 1.
In order to make the task easier, Vasya decided to apply the method to sequences consisting of zeros and ones only.
Having made the procedure once, Vasya looked at the resulting sequence and thought: what if I apply the algorithm to it once again, and then apply it to the next result, and so on? Vasya tried a couple of examples and found out that after some number of median
smoothing algorithm applications the sequence can stop changing. We say that the sequence is stable, if it does not change when the median smoothing is applied to it.
Now Vasya wonders, whether the sequence always eventually becomes stable. He asks you to write a program that, given a sequence of zeros and ones, will determine whether it ever becomes stable. Moreover, if it ever becomes stable, then you should determine
what will it look like and how many times one needs to apply the median smoothing algorithm to initial sequence in order to obtain a stable one.
The first input line of the input contains a single integer n (3 ≤ n ≤ 500 000) —
the length of the initial sequence.
The next line contains n integers a1, a2, ..., an (ai = 0 or ai = 1),
giving the initial sequence itself.
If the sequence will never become stable, print a single number - 1.
Otherwise, first print a single integer — the minimum number of times one needs to apply the median smoothing algorithm to the initial sequence before it becomes is stable. In the second line print n numbers
separated by a space — the resulting sequence itself.
4
0 0 1 1
0
0 0 1 1
5
0 1 0 1 0
2
0 0 0 0 0
In the second sample the stabilization occurs in two steps: ,
and the sequence 00000 is obviously stable.
题意是给出了一段 0 1 组成的波,然后这个波的值可能会发生变化,排除起点与终点,如果某一位置上的值不等于其左右位置加上自己的中位数话,那么它会变成中位数,这样导致波会振荡一次,问波最终是否会稳定,不会输出-1。会,就输出其振荡次数与最终波的值。
首先可以判断最终波是一定会稳定的,不可能最终不稳定,因为只有0与1,边缘值a1与an不变了,所以他们只会往中间延伸这种稳定的状态,然后我做的方法是叠加,如果前者不稳定,那么后者的不稳定程度+1,其实这么做是不对的,波振荡的这一系列的值只可能是一个山峰形状的,如1 2 1 或者 1 2 2 1.但是因为都是 0 1组成所以不用管那么多,只需管每一位置振荡次数的奇偶即可。然后就是判断每一段振荡最终位置的值,奇数不用管了,1
2 3 4 5和1 2 3 2 1最终形成的效果是一样的。偶数需要调整,1 2 3 4要调整为 1 2 2 1这样的效果。
代码:
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std; int n;
int a[5];
int val[500005];
int stable[500005]; int main()
{
//freopen("i.txt", "r", stdin);
//freopen("o.txt", "w", stdout); int i, k, maxn;
scanf("%d", &n); for (i = 0; i < n; i++)
scanf("%d", val + i); maxn = 0;
memset(stable, 0, sizeof(stable)); for (i = 1; i < n - 1; i++)
{
a[0] = val[i - 1];
a[1] = val[i];
a[2] = val[i + 1]; sort(a, a + 3); if (val[i] != a[1])
{
stable[i] = stable[i - 1] + 1;
maxn = max(maxn, stable[i]);
}
else
{
stable[i] = 0;
}
}
int flag = 0;
for (i = n - 2; i >= 1; i--)
{
if (stable[i] == 0)
{
flag = 0;
}
else
{
if (flag == 0 && stable[i])
{
flag = 1;
if (stable[i] % 2 == 0)
{
int temp = stable[i];
for (k = temp; k > temp / 2; k--)
{
stable[i]++;
i--;
}
i++;
}
}
}
} printf("%d\n", (maxn + 1) / 2);
for (i = 0; i < n; i++)
{
if (i == 0)
{
printf("%d", val[i]);
}
else
{
if (stable[i] & 1)
{
printf(" %d", (val[i] + 1) & 1);
}
else
{
printf(" %d", val[i]);
}
}
}
printf("\n");
//system("pause");
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
Codeforces 590 A:Median Smoothing的更多相关文章
- Codeforces Round #327 (Div. 2) C. Median Smoothing 找规律
C. Median Smoothing Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/591/p ...
- Codeforces Round #327 (Div. 2) B. Rebranding C. Median Smoothing
B. Rebranding The name of one small but proud corporation consists of n lowercase English letters. T ...
- codeforces 590A A. Median Smoothing(思维)
题目链接: A. Median Smoothing time limit per test 2 seconds memory limit per test 256 megabytes input st ...
- Codeforces Round #327 (Div. 2)C. Median Smoothing 构造
C. Median Smoothing A schoolboy named Vasya loves reading books on programming and mathematics. He ...
- 【22.70%】【codeforces 591C】 Median Smoothing
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- cf590A Median Smoothing
A. Median Smoothing time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- ACM学习历程—CodeForces 590A Median Smoothing(分类讨论 && 数学)
题目链接:http://codeforces.com/problemset/problem/590/A 题目大意是给一个串,头和尾每次变换保持不变. 中间的a[i]变成a[i-1],a[i],a[i+ ...
- Codeforces Round #327 (Div. 1), problem: (A) Median Smoothing
http://codeforces.com/problemset/problem/590/A: 在CF时没做出来,当时直接模拟,然后就超时喽. 题意是给你一个0 1串然后首位和末位固定不变,从第二项开 ...
- CodeForces - 1005E2:Median on Segments (General Case Edition) (函数的思想)
You are given an integer sequence a1,a2,…,ana1,a2,…,an. Find the number of pairs of indices (l,r)(l, ...
随机推荐
- jmeter download historyList
https://archive.apache.org/dist/jmeter/binaries/ 反馈,问题和评论应发送到Apache JMeter Users 邮件列表. 有关更多信息, 请访问Ap ...
- 大数据篇:MapReduce
MapReduce MapReduce是什么? MapReduce源自于Google发表于2004年12月的MapReduce论文,是面向大数据并行处理的计算模型.框架和平台,而Hadoop MapR ...
- 275 原型与原型链:显式原型prototype ,隐式原型__proto__,隐式原型链,原型链_属性问题,给原型对象添加属性/方法
1.所有函数都有一个特别的属性 prototype : 显式原型属性 [普通构造函数的实例对象没有prototype 属性,构造函数有__proto__属性,原型对象有__proto__属性 ] 2. ...
- [Misc] ZSH 常用快捷键
安装 zsh 终端执行 brew install zsh 终端执行 vim ~/.bash_profile 命令,打开 .bash_profile 文件 如果没有 vim,请自行安装 在打开的文件中, ...
- LUA拾翠
一.函数 1.格式 optional_function_scope function function_name( argument1, argument2, argument3..., argume ...
- Python数据类型-1 数据类型介绍
数据类型 在python这门语言中,数据类型分为两种. 内置的和自定义的. 内置的包括数字.字符串.布尔.列表.元组.字典.Bytes.集合这些常用的以及一些不太常用的数据类型.而自定义的,一般以类的 ...
- springmvc 请求出现400错误(当传入的参数类型是Date时加上下面代码试试)
@InitBinder protected void initBinder(HttpServletRequest request, ServletRequestDataBinder binder) t ...
- Linux centosVMware运行告警系统、分发系统-expect讲解、自动远程登录后,执行命令并退出、expect脚本传递参数、expect脚本同步文件、指定host和要同步的文件、shell项目-分发系统-构建文件分发系统、分发系统-命令批量执行
一运行告警系统 创建一个任务计划crontab -e 每一分钟都执行一次 调试时把主脚本里边log先注释掉 再次执行 没有发现502文件说明执行成功了,每日有错误,本机IP 负载不高 二.分发系统-e ...
- luogu P4013 数字梯形问题
三倍经验,三个条件,分别对应了常见的3种模型,第一种是限制每个点只能一次且无交点,我们可以把这个点拆成一个出点一个入点,capacity为1,这样就限制了只选择一次,第二种是可以有交点,但不能有交边, ...
- 【快学springboot】13.操作redis之String数据结构
前言 在之前的文章中,讲解了使用redis解决集群环境session共享的问题[快学springboot]11.整合redis实现session共享,这里已经引入了redis相关的依赖,并且通过spr ...