本来想参照:https://mp.weixin.qq.com/s/e7Wd7aEatcLFGgJUDkg-EQ搞一个往年编程语言动态图的,奈何找不到数据,有数据来源的欢迎在评论区留言。

这里找到了一个,是2020年6月的编程语言排行,供大家看一下:https://www.tiobe.com/tiobe-index/

我们要实现的效果是:

大学排名来源:http://www.zuihaodaxue.com/ARWU2003.html

部分截图:

在http://www.zuihaodaxue.com/ARWU2003.html中的年份可以选择,我们解析的页面就有了:

"http://www.zuihaodaxue.com/ARWU%s.html" % str(year)

初步获取页面的html信息的代码:

def get_one_page(year):
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36'
}
url = "http://www.zuihaodaxue.com/ARWU%s.html" % str(year)
response=requests.get(url,headers=headers)
if response.status_code == 200:
return response.content
except RequestException:
print('爬取失败')

我们在页面上进行检查:

数据是存储在表格中的,这样我们就可以利用pandas获取html中的数据,基本语法:

tb = pd.read_html(url)[num]

其中的num是标识网页中的第几个表格,这里只有一个表格,所以标识为0。初步的解析代码就有了:

def parse_on_page(html,i):
tb=pd.read_html(html)[0]
return tb

我们还要将爬取下来的数据存储到csv文件中,基本代码如下:

def save_csv(tb):
start_time=time.time()
tb.to_csv(r'university.csv', mode='a', encoding='utf_8_sig', header=True, index=0)
endtime = time.time()-start_time
print('程序运行了%.2f秒' %endtime)

最后是一个主函数,别忘了还有需要导入的包:

import requests
from requests.exceptions import RequestException
import pandas as pd
import time
def main(year):
for i in range(2003,year):
html=get_one_page(i)
tb=parse_on_page(html,i)
#print(tb)
save_csv(tb)
if __name__ == "__main__":
main(2004)

运行之后,我们在同级目录下就可以看到university.csv,部分内容如下:

存在两个问题:

(1)缺少年份

(2)最后一列没有用

(3)国家由于是图片表示,没有爬取下来

(4)排名100以后的是一个区间

我们接下来一一解决:

(1)删掉没用的列

def parse_on_page(html,i):
tb=pd.read_html(html)[0]
# 重命名表格列,不需要的列用数字表示
tb.columns = ['world rank','university', 2, 'score',4]
tb.drop([2,4],axis=1,inplace=True)
return tb

新的结果:

(2) 对100以后的进行唯一化,增加一列index作为排名标识

tb['index_rank'] = tb.index
tb['index_rank'] = tb['index_rank'].astype(int) + 1

(3)新增加年份

tb['year'] = i

(4)新增加国家

首先我们进行检查:

发现国家在td->a>img下的图像路径中有名字:UnitedStates。 我们可以取出src属性,并用正则匹配名字即可。

def get_country(html):
soup = BeautifulSoup(html,'lxml')
countries = soup.select('td > a > img')
lst = []
for i in countries:
src = i['src']
pattern = re.compile('flag.*\/(.*?).png')
country = re.findall(pattern,src)[0]
lst.append(country)
return lst

然后这么使用:

# read_html没有爬取country,需定义函数单独爬取
tb['country'] = get_country(html)

最终解析的整体函数如下:

def parse_on_page(html,i):
tb=pd.read_html(html)[0]
# 重命名表格列,不需要的列用数字表示
tb.columns = ['world rank','university', 2, 'score',4]
tb.drop([2,4],axis=1,inplace=True)
tb['index_rank'] = tb.index
tb['index_rank'] = tb['index_rank'].astype(int) + 1
tb['year'] = i
# read_html没有爬取country,需定义函数单独爬取
tb['country'] = get_country(html)
return tb

运行之后:

最后我们要提取属于中国部分的相关信息:

首先将年份改一下,获取到2019年为止的信息:

if __name__ == "__main__":
main(2019)

然后我们提取到中国高校的信息,直接看代码理解:

def analysis():
df = pd.read_csv('university.csv')
# 包含港澳台
# df = df.query("(country == 'China')|(country == 'China-hk')|(country == 'China-tw')|(country == 'China-HongKong')|(country == 'China-Taiwan')|(country == 'Taiwan,China')|(country == 'HongKong,China')")[['university','year','index_rank']] # 只包括内地
df = df.query("(country == 'China')")
df['index_rank_score'] = df['index_rank']
# 将index_rank列转为整形
df['index_rank'] = df['index_rank'].astype(int) # 美国
# df = df.query("(country == 'UnitedStates')|(country == 'USA')") #求topn名
def topn(df):
top = df.sort_values(['year','index_rank'],ascending = True)
return top[:20].reset_index()
df = df.groupby(by =['year']).apply(topn) # 更改列顺序
df = df[['university','index_rank_score','index_rank','year']]
# 重命名列
df.rename (columns = {'university':'name','index_rank_score':'type','index_rank':'value','year':'date'},inplace = True) # 输出结果
df.to_csv('university_ranking.csv',mode ='w',encoding='utf_8_sig', header=True, index=False)
# index可以设置

本来是想爬取从2003年到2019年的,运行时发现从2005年开始,页面不一样了,多了一列:

方便起见,我们就只从2005年开始了,还需要修改一下代码:

    # 重命名表格列,不需要的列用数字表示
tb.columns = ['world rank','university', 2,3, 'score',5]
tb.drop([2,3,5],axis=1,inplace=True)

最后是整体代码:

import requests
from requests.exceptions import RequestException
import pandas as pd
import time
from bs4 import BeautifulSoup
import re
def get_one_page(year):
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36'
}
url = "http://www.zuihaodaxue.com/ARWU%s.html" % str(year)
response=requests.get(url,headers=headers)
if response.status_code == 200:
return response.content
except RequestException:
print('爬取失败')
def parse_on_page(html,i):
tb=pd.read_html(html)[0]
# 重命名表格列,不需要的列用数字表示
tb.columns = ['world rank','university', 2,3, 'score',5]
tb.drop([2,3,5],axis=1,inplace=True)
tb['index_rank'] = tb.index
tb['index_rank'] = tb['index_rank'].astype(int) + 1
tb['year'] = i
# read_html没有爬取country,需定义函数单独爬取
tb['country'] = get_country(html)
return tb
def save_csv(tb):
start_time=time.time()
tb.to_csv(r'university.csv', mode='a', encoding='utf_8_sig', header=True, index=0)
endtime = time.time()-start_time
print('程序运行了%.2f秒' %endtime)
# 提取国家名称
def get_country(html):
soup = BeautifulSoup(html,'lxml')
countries = soup.select('td > a > img')
lst = []
for i in countries:
src = i['src']
pattern = re.compile('flag.*\/(.*?).png')
country = re.findall(pattern,src)[0]
lst.append(country)
return lst
def analysis():
df = pd.read_csv('university.csv')
# 包含港澳台
# df = df.query("(country == 'China')|(country == 'China-hk')|(country == 'China-tw')|(country == 'China-HongKong')|(country == 'China-Taiwan')|(country == 'Taiwan,China')|(country == 'HongKong,China')")[['university','year','index_rank']] # 只包括内地
df = df.query("(country == 'China')")
df['index_rank_score'] = df['index_rank']
# 将index_rank列转为整形
df['index_rank'] = df['index_rank'].astype(int) # 美国
# df = df.query("(country == 'UnitedStates')|(country == 'USA')") #求topn名
def topn(df):
top = df.sort_values(['year','index_rank'],ascending = True)
return top[:20].reset_index()
df = df.groupby(by =['year']).apply(topn) # 更改列顺序
df = df[['university','index_rank_score','index_rank','year']]
# 重命名列
df.rename (columns = {'university':'name','index_rank_score':'type','index_rank':'value','year':'date'},inplace = True) # 输出结果
df.to_csv('university_ranking.csv',mode ='w',encoding='utf_8_sig', header=True, index=False)
# index可以设置
def main(year):
for i in range(2005,year):
html=get_one_page(i)
tb=parse_on_page(html,i)
save_csv(tb)
print(i,'年排名提取完成完成')
analysis()
if __name__ == "__main__":
main(2019)

运行之后会有一个university_ranking.csv,部分内容如下:

接下来就是可视化过程了。

1、 首先,到作者的github主页:  
https://github.com/Jannchie/Historical-ranking-data-visualization-based-on-d3.js

2、克隆仓库文件,使用git

# 克隆项目仓库
git clone https://github.com/Jannchie/Historical-ranking-data-visualization-based-on-d3.js
# 切换到项目根目录
cd Historical-ranking-data-visualization-based-on-d3.js
# 安装依赖
npm install

这里如果git clone超时可参考:

https://www.cnblogs.com/xiximayou/p/12305209.html

需要注意的是,这里的npm是我之前装node.js装了的,没有的自己需要装以下。

在执行npm install时会报错:

先执行:

npm init

之后一直回车即可:

再执行npm install

任意浏览器打开bargraph.html网页,点击选择文件,然后选择前面输出的university_ranking.csv文件,看下效果:

只能制作动图上传了。

可以看到,有了大致的可视化效果,但还存在很多瑕疵,比如:表顺序颠倒了、字体不合适、配色太花哨等。可不可以修改呢?

当然是可以的,只需要分别修改文件夹中这几个文件的参数就可以了:

  • config.js 全局设置各项功能的开关,比如配色、字体、文字名称、反转图表等等功能;

  • color.css 修改柱形图的配色;

  • stylesheet.css 具体修改配色、字体、文字名称等的css样式;

  • visual.js 更进一步的修改,比如图表的透明度等。

知道在哪里修改了以后,那么,如何修改呢?很简单,只需要简单的几步就可以实现:

  • 打开网页,右键-检查,箭头指向想要修改的元素,然后在右侧的css样式表里,双击各项参数修改参数,修改完元素就会发生变化,可以不断微调,直至满意为止。

  • 把参数复制到四个文件中对应的文件里并保存。

  • Git Bash运行npm run build,之后刷新网页就可以看到优化后的效果。(我发现这一步其实不需要,而且会报错,我直接修改config.js之后运行也成功了)

这里我主要修改的是config.js的以下项:

  // 倒序,使得最短的条位于最上方
reverse: true,
// 附加信息内容。
// left label
itemLabel: "本年度第一大学",
// right label
typeLabel: "世界排名",
//为了避免名称重叠
item_x: ,
// 时间标签坐标。建议x:1000 y:-50开始尝试,默认位置为x:null,y:null
dateLabel_x: ,
dateLabel_y: -,

最终效果:

至此,就全部完成了。

看起来简单,还是得要自己动手才行。

python动态柱状图图表可视化:历年软科中国大学排行的更多相关文章

  1. python爬虫学习(二):定向爬虫例子-->使用BeautifulSoup爬取"软科中国最好大学排名-生源质量排名2018",并把结果写进txt文件

    在正式爬取之前,先做一个试验,看一下爬取的数据对象的类型是如何转换为列表的: 写一个html文档: x.html<html><head><title>This is ...

  2. python爬虫入门---第二篇:获取2019年中国大学排名

    我们需要爬取的网站:最好大学网 我们需要爬取的内容即为该网页中的表格部分: 该部分的html关键代码为: 其中整个表的标签为<tbody>标签,每行的标签为<tr>标签,每行中 ...

  3. Python交互图表可视化Bokeh:1. 可视交互化原理| 基本设置

    Bokeh pandas和matplotlib就可以直接出分析的图表了,最基本的出图方式.是面向数据分析过程中出图的工具:Seaborn相比matplotlib封装了一些对数据的组合和识别的功能:用S ...

  4. 使用Python的Flask框架,结合Highchart,动态渲染图表(Ajax 请求数据接口)

    参考链接:https://www.highcharts.com.cn/docs/ajax 参考链接中的示例代码是使用php写的,这里改用python写. 需要注意的地方: 1.接口返回的数据格式,这个 ...

  5. 使用Python的Flask框架,结合Highchart,动态渲染图表

    服务端动态渲染图表 参考文章链接:https://www.highcharts.com.cn/docs/dynamic-produce-html-page 参考文章是使用php写的,我这边改用pyth ...

  6. 百度echart如何动态生成图表

    百度echart如何动态生成图表 一.总结 一句话总结: clear hideloading setOption 主要是下面三行代码: myChart.clear(); //清空画布myChart.h ...

  7. Python之绘图和可视化

    Python之绘图和可视化 1. 启用matplotlib 最常用的Pylab模式的IPython(IPython --pylab) 2. matplotlib的图像都位于Figure对象中. 可以使 ...

  8. 沉淀再出发:用python画各种图表

    沉淀再出发:用python画各种图表 一.前言 最近需要用python来做一些统计和画图,因此做一些笔记. 二.python画各种图表 2.1.使用turtle来画图 import turtle as ...

  9. ASP.NET Core +Highchart+ajax绘制动态柱状图

    一.项目介绍利用前端Highchart,以及ajax向后台获取数据,绘制动态柱状图.hightchart其他实例可查看官网文档.[Highchart](https://www.highcharts.c ...

随机推荐

  1. 【QT】QT资料集锦

    欢迎来到我的博客! 以下链接均是日常学习,偶然得之,并加以收集整理,感兴趣的朋友可以多多访问和学习.如果以下内容对你有所帮助,不妨转载和分享.(Update on 30,November,2019) ...

  2. html5学习之路_005

    PHP环境搭建 1.下载安装xampp 2.打开xampp,开启mysql和apache 3.在开发环境eclips中下载插件 4.安装php 5.切换到php开发环境 6.创建一个php项目 7.打 ...

  3. centos系统与ubuntu系统的区别

    centos和ubuntu简述 CentOS(Community ENTerprise Operating System)是Linux发行版之一,它是来自于Red Hat Enterprise Lin ...

  4. 【Java8新特性】不了解Optional类,简历上别说你懂Java8!!

    写在前面 最近,很多读者出去面试都在Java8上栽了跟头,事后自己分析,确实对Java8的新特性一知半解.然而,却在简历显眼的技能部分写着:熟练掌握Java8的各种新特性,能够迅速使用Java8开发高 ...

  5. 01 . HAProxy原理使用和配置

    HaProxy简介 HaProxy是什么? HAProxy是一个免费的负载均衡软件,可以运行于大部分主流的Linux操作系统上. HAProxy提供了L4(TCP)和L7(HTTP)两种负载均衡能力, ...

  6. 01 . 消息队列之(Kafka+ZooKeeper)

    消息队列简介 什么是消息队列? 首先,我们来看看什么是消息队列,维基百科里的解释翻译过来如下: 队列提供了一种异步通信协议,这意味着消息的发送者和接受者不需要同时与消息保持联系,发送者发送的消息会存储 ...

  7. win服务器管理系统全面升级,教您如何成为运维达人

    作为服务器运维人员都知道,日常检查服务器问题并处理问题几乎占据了所有时间,检查服务器的繁琐也只有他们自己能体会,这些外界看似的“工作本分职责”,真是有苦难言.为此我专门研究了市面上三款主打的服务器管理 ...

  8. Orcle 查询语句

    首先,以超级管理员的身份登录oracle       sqlplus sys/bjsxt as sysdba   --然后,解除对scott用户的锁       alter user scott ac ...

  9. SpringBoot返回html页面

    一般Controller返回数据或页面,今天谈一下返回页面的场景. 一.不使用template 1. controller中定义对应的访问路由及返回的页面(使用Controller,不要使用RestC ...

  10. java eclipse tomcat

    Port 8080 required by Tomcat v9.0 Server at localhost is already in use. The server may already be r ...