POJ 2451 Uyuw's Concert (半平面交)
题目链接:POJ 2451
Problem Description
Prince Remmarguts solved the CHESS puzzle successfully. As an award, Uyuw planned to hold a concert in a huge piazza named after its great designer Ihsnayish.
The piazza in UDF - United Delta of Freedom’s downtown was a square of [0, 10000] * [0, 10000]. Some basket chairs had been standing there for years, but in a terrible mess. Look at the following graph.
In this case we have three chairs, and the audiences face the direction as what arrows have pointed out. The chairs were old-aged and too heavy to be moved. Princess Remmarguts told the piazza's current owner Mr. UW, to build a large stage inside it. The stage must be as large as possible, but he should also make sure the audience in every position of every chair would be able to see the stage without turning aside (that means the stage is in the forward direction of their own).
To make it simple, the stage could be set highly enough to make sure even thousands of chairs were in front of you, as long as you were facing the stage, you would be able to see the singer / pianist – Uyuw.
Being a mad idolater, can you tell them the maximal size of the stage?
Input
In the first line, there's a single non-negative integer N (N <= 20000), denoting the number of basket chairs. Each of the following lines contains four floating numbers x1, y1, x2, y2, which means there’s a basket chair on the line segment of (x1, y1) – (x2, y2), and facing to its LEFT (That a point (x, y) is at the LEFT side of this segment means that (x – x1) * (y – y2) – (x – x2) * (y – y1) >= 0).
Output
Output a single floating number, rounded to 1 digit after the decimal point. This is the maximal area of the stage.
Sample Input
3
10000 10000 0 5000
10000 5000 5000 10000
0 5000 5000 0
Sample Output
54166666.7
Source
POJ Monthly, Zeyuan Zhu
Hint
Sample input is the same as the graph above, while the correct solution for it is as below:
I suggest that you use Extended in pascal and long double in C / C++ to avoid precision error. But the standard program only uses double.
Solution
题意
给定一个正方形的边界和 \(n\) 个向量,求围出的多边形的核的面积。
题解
半平面交
半平面交求多边形的核的模板题。
POJ 的 g++ 好像经常用 long double
才能过。
Code
#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
typedef long double db;
const db eps = 1e-10;
const db pi = acos(-1.0);
const ll inf = 0x3f3f3f3f3f3f3f3f;
const ll maxn = 1e5 + 10;
inline int dcmp(db x) {
if(fabs(x) < eps) return 0;
return x > 0? 1: -1;
}
class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
inline void input() {
scanf("%lf%lf", &x, &y);
}
bool operator<(const Point &a) const {
return (!dcmp(x - a.x))? dcmp(y - a.y) < 0: x < a.x;
}
bool operator==(const Point &a) const {
return dcmp(x - a.x) == 0 && dcmp(y - a.y) == 0;
}
db dis2(const Point a) {
return pow(x - a.x, 2) + pow(y - a.y, 2);
}
db dis(const Point a) {
return sqrt(dis2(a));
}
db dis2() {
return x * x + y * y;
}
db dis() {
return sqrt(dis2());
}
Point operator+(const Point a) {
return Point(x + a.x, y + a.y);
}
Point operator-(const Point a) {
return Point(x - a.x, y - a.y);
}
Point operator*(double p) {
return Point(x * p, y * p);
}
Point operator/(double p) {
return Point(x / p, y / p);
}
db dot(const Point a) {
return x * a.x + y * a.y;
}
db cross(const Point a) {
return x * a.y - y * a.x;
}
db ang(Point a) {
return acos((a.dis() * dis()) / dot(a));
}
};
typedef Point Vector;
Point p[maxn], ip[maxn];
class Line {
public:
Point s, e;
db angle;
Line() {}
Line(Point s, Point e) : s(s), e(e) {}
inline void input() {
s.input();e.input();
}
bool operator<(const Line &a) const {
Line l = a;
if(dcmp(angle - l.angle) == 0) {
return l.toLeftTest(s) == 1;
}
return angle < l.angle;
}
void get_angle() {
angle = atan2(e.y - s.y, e.x - s.x);
}
int toLeftTest(Point p) {
if((e - s).cross(p - s) > 0) return 1;
else if((e - s).cross(p - s) < 0) return -1;
return 0;
}
int linecrossline(Line l) {
if(dcmp((e - s).cross(l.e - l.s)) == 0) {
if(dcmp((l.s - e).cross(l.e - s)) == 0) {
return 0;
}
return 1;
}
return 2;
}
Point crosspoint(Line l) {
db a1 = (l.e - l.s).cross(s - l.s);
db a2 = (l.e - l.s).cross(e - l.s);
db x = (s.x * a2 - e.x * a1) / (a2 - a1);
db y = (s.y * a2 - e.y * a1) / (a2 - a1);
if(dcmp(x) == 0) x = 0;
if(dcmp(y) == 0) y = 0;
return Point(x, y);
}
};
Line l[maxn], q[maxn];
db half_plane(int cnt) {
sort(l + 1, l + 1 + cnt);
int tmp = 1;
for(int i = 2; i <= cnt; ++i) {
if(dcmp(l[i].angle - l[tmp].angle) == 1) l[++tmp] = l[i];
}
cnt = tmp;
int head = 1, tail = 2;
q[1] = l[1], q[2] = l[2];
for(int i = 3; i <= cnt; ++i) {
while(head < tail && l[i].toLeftTest(q[tail].crosspoint(q[tail - 1])) == -1) {
--tail;
}
while(head < tail && l[i].toLeftTest(q[head].crosspoint(q[head + 1])) == -1) {
++head;
}
q[++tail] = l[i];
}
while(head < tail && q[head].toLeftTest(q[tail].crosspoint(q[tail - 1])) == -1) {
--tail;
}
while(head < tail && q[tail].toLeftTest(q[head].crosspoint(q[head + 1])) == -1) {
++head;
}
if(tail - head + 1 <= 2) {
return 0.0;
}
tmp = 0;
for(int i = head; i < tail; ++i) {
ip[++tmp] = q[i].crosspoint(q[i + 1]);
}
ip[++tmp] = q[head].crosspoint(q[tail]);
db ans = 0;
for(int i = 3; i <= tmp; ++i) {
ans += (ip[i - 1] - ip[1]).cross(ip[i] - ip[1]);
}
ans *= 0.5;
if(dcmp(ans) == 0) ans = 0.0;
return ans;
}
int main() {
int n;
int _ = 0;
while(~scanf("%d", &n)) {
l[1] = Line(Point(0, 0), Point(10000, 0)); l[1].get_angle();
l[2] = Line(Point(10000, 0), Point(10000, 10000)); l[2].get_angle();
l[3] = Line(Point(10000, 10000), Point(0, 10000)); l[3].get_angle();
l[4] = Line(Point(0, 10000), Point(0, 0)); l[4].get_angle();
for(int i = 1; i <= n; ++i) {
l[4 + i].input();
l[4 + i].get_angle();
}
// cout << ++_ << " ";
printf("%.1lf\n", half_plane(n + 4));
}
return 0;
}
POJ 2451 Uyuw's Concert (半平面交)的更多相关文章
- poj 2451 Uyuw's Concert (半平面交)
2451 -- Uyuw's Concert 继续半平面交,这还是简单的半平面交求面积,不过输入用cin超时了一次. 代码如下: #include <cstdio> #include &l ...
- poj 2451 Uyuw's Concert(半平面交)
Uyuw's Concert Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 8580 Accepted: 3227 De ...
- poj 2451 Uyuw's Concert
[题目描述] Remmarguts公主成功地解决了象棋问题.作为奖励,Uyuw计划举办一场音乐会,地点是以其伟大的设计师Ihsnayish命名的巨大广场. 这个位于自由三角洲联合王国(UDF,Unit ...
- POJ2451 Uyuw's Concert(半平面交)
题意就是给你很多个半平面,求半平面交出来的凸包的面积. 半平面交有O(n^2)的算法,就是每次用一个新的半平面去切已有的凸包,更新,这个写起来感觉也不是特别好写. 另外一个O(nlogn)的算法是将半 ...
- POJ 2451 Uyuw's Concert(半平面交nlgn)
//#pragma comment(linker, "/STACK:16777216") //for c++ Compiler #include <stdio.h> # ...
- poj 3335 Rotating Scoreboard(半平面交)
Rotating Scoreboard Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6420 Accepted: 25 ...
- POJ 1279 Art Gallery(半平面交求多边形核的面积)
题目链接 题意 : 求一个多边形的核的面积. 思路 : 半平面交求多边形的核,然后在求面积即可. #include <stdio.h> #include <string.h> ...
- POJ 3335 Rotating Scoreboard(半平面交求多边形核)
题目链接 题意 : 给你一个多边形,问你在多边形内部是否存在这样的点,使得这个点能够看到任何在多边形边界上的点. 思路 : 半平面交求多边形内核. 半平面交资料 关于求多边形内核的算法 什么是多边形的 ...
- POJ 3384 放地毯【半平面交】
<题目链接> 题目大意: 给出一个凸多边形的房间,根据风水要求,把两个圆形地毯铺在房间里,不能折叠,不能切割,可以重叠.问最多能覆盖多大空间,输出两个地毯的圆心坐标.多组解输出其中一个,题 ...
随机推荐
- 项目集成swagger,并暴露指定端点给swagger
项目集成swagger 一:思考: 1.swagger解决了我们什么问题? 传统开发中,我们在开发完成一个接口后,为了测试我们的接口,我们通常会编写单元测试,以测试我们的接口的可用性,或者用postm ...
- 《Java技术》 第二次作业
java第二次作业 (一)学习总结 1.学习使用Eclipse关联jdk源代码,查看String类的equals()方法,截图,并学习其实现方法.举例说明equals方法和==的区别. 在Eclips ...
- javascript闭包实现缓存小案例
/* * 闭包实现缓存 * 属性:有个键--值 --->所以可以将缓存数据存放在一个对象中 * 方法:缓存存储 setCache * 缓存的获取 getCache * */ function ...
- textarea高度随文本内容变化,且不出现滚动条
通常文本域的写法如下 <textarea type="text" class="form-control pull-left" id="desc ...
- teb教程9
通过costmap_converter来跟踪和包含动态障碍物 简介:利用costmap_converter来很容易跟踪动态障碍物 1.costmap_converter中提供了一个插件称之为costm ...
- 【前端优化】图片延迟加载Lazy-loading的原理与简单实现
1.什么是lazy-loading 图片"懒加载" 为img标签src设置统一的图片链接,而将真实链接地址装在自定义属性中. 所以开始时候图片是不会加载的,我们将满足条件的图片的s ...
- IntelliJ IDEA 添加本地xsd文件
地址: http://code.alibabatech.com/schema/dubbo/dubbo.xsd
- C++使用cout输出中文,打印出来是乱码
windows下的控制台使用的是gbk编码.你输出的是unicode.在Vs中更改高级保存选项,将Unicode改为GB类型(比如GB18030)
- Web前端/全栈核心(html5/css3/js/vue/react/angular/es6/node)观看笔记
a标签中的超链接,需要加 http:// 否则会出现页面找不到. iframe中添加a标签,a标签中的target属性可以控制即将打开的页面,在那个位置显示. _blank 在新窗口中打开被 ...
- leetcode-163周赛-1262-可被3整除的最大和
题目描述: 方法一:动态规划 O(N) class Solution: def maxSumDivThree(self, nums: List[int]) -> int: dp = [0, -1 ...